Md Osama


2025

pdf bib
CUET_INSights@NLU of Devanagari Script Languages 2025: Leveraging Transformer-based Models for Target Identification in Hate Speech
Farjana Alam Tofa | Lorin Tasnim Zeba | Md Osama | Ashim Dey
Proceedings of the First Workshop on Challenges in Processing South Asian Languages (CHiPSAL 2025)

Hate speech detection in multilingual content is a challenging problem especially when it comes to understanding the specific targets of hateful expressions. Identifying the targets of hate speech whether directed at individuals, organizations or communities is crucial for effective content moderation and understanding the context. A shared task on hate speech detection in Devanagari Script Languages organized by CHIPSAL@COLING 2025 allowed us to address the challenge of identifying the target of hate speech in the Devanagari Script Language. For this task, we experimented with various machine learning (ML) and deep learning (DL) models including Logistic Regression, Decision Trees, Random Forest, SVM, CNN, LSTM, BiLSTM, and transformer-based models like MiniLM, m-BERT, and Indic-BERT. Our experiments demonstrated that Indic-BERT achieved the highest F1-score of 0.69, ranked 3rd in the shared task. This research contributes to advancing the field of hate speech detection and natural language processing in low-resource languages.

pdf bib
CUET_Novice@DravidianLangTech 2025: A Multimodal Transformer-Based Approach for Detecting Misogynistic Memes in Malayalam Language
Khadiza Sultana Sayma | Farjana Alam Tofa | Md Osama | Ashim Dey
Proceedings of the Fifth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages

Memes, combining images and text, are a popular social media medium that can spread humor or harmful content, including misogyny—hatred or discrimination against women. Detecting misogynistic memes in Malayalam is challenging due to their multimodal nature, requiring analysis of both visual and textual elements. A Shared Task on Misogyny Meme Detection, organized as part of DravidianLangTech@NAACL 2025, aimed to address this issue by promoting the advancement of multimodal machine learning models for classifying Malayalam memes as misogynistic or non-misogynistic. In this work, we explored visual, textual, and multimodal approaches for meme classification. CNN, ResNet50, Vision Transformer (ViT), and Swin Transformer were used for visual feature extraction, while mBERT, IndicBERT, and MalayalamBERT were employed for textual analysis. Additionally, we experimented with multimodal fusion models, including IndicBERT+ViT, MalayalamBERT+ViT, and MalayalamBERT+Swin. Among these, our MalayalamBERT+Swin Transformer model performed best, achieving the highest weighted F1-score of 0.87631, securing 1st place in the competition. Our results highlight the effectiveness of multimodal learning in detecting misogynistic Malayalam memes and the need for robust AI models in low-resource languages.

pdf bib
CUET_Novice@DravidianLangTech 2025: Abusive Comment Detection in Malayalam Text Targeting Women on Social Media Using Transformer-Based Models
Farjana Alam Tofa | Khadiza Sultana Sayma | Md Osama | Ashim Dey
Proceedings of the Fifth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages

Social media has become a widely used platform for communication and entertainment, but it has also become a space where abuseand harassment can thrive. Women, in particular, face hateful and abusive comments that reflect gender inequality. This paper discussesour participation in the Abusive Text Targeting Women in Dravidian Languages shared task at DravidianLangTech@NAACL 2025, whichfocuses on detecting abusive text targeting women in Malayalam social media comments. The shared task provided a dataset of YouTubecomments in Tamil and Malayalam, focusing on sensitive and controversial topics where abusive behavior is prevalent. Our participationfocused on the Malayalam dataset, where the goal was to classify comments into these categories accurately. Malayalam-BERT achievedthe best performance on the subtask, securing 3rd place with a macro f1-score of 0.7083, highlighting the effectiveness of transformer models for low-resource languages. These results contribute to tackling gender-based abuse and improving online content moderation for underrepresented languages.

pdf bib
CUET_Novice@DravidianLangTech 2025: A Bi-GRU Approach for Multiclass Political Sentiment Analysis of Tamil Twitter (X) Comments
Arupa Barua | Md Osama | Ashim Dey
Proceedings of the Fifth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages

Political sentiment analysis in multilingual content poses significant challenges in capturing the subtle variations of diverse sentiments expressed in complex and low-resourced languages. Accurately classifying sentiments, whether positive, negative, or neutral, is crucialfor understanding public discourse. A shared task on Political Multiclass Sentiment Analysis of Tamil X (Twitter) Comments, organized by DravidianLangTech@NAACL 2025, provided an opportunity to tackle these challenges. For this task, we implemented two data augmentation techniques, which are synonym replacement and back translation, and then explored various machine learning (ML) algorithms, including Logistic Regression, Decision Tree, Random Forest, SVM, and MultiNomial Naive Bayes. To capture the semantic meanings more efficiently, we experimented with deep learning (DL) models, including GRU, BiLSTM, BiGRU, and a hybrid CNN-BiLSTM.The Bidirectional Gated Recurrent Unit (BiGRU) achieved the best macro-F1 (MF1) score of 0.33, securing the 17th position in the sharedtask. These findings underscore the challenges of political sentiment analysis in low-resource languages and the need for advanced language-specific models for improved classification.

2024

pdf bib
CUET_NLP_GoodFellows@DravidianLangTech EACL2024: A Transformer-Based Approach for Detecting Fake News in Dravidian Languages
Md Osama | Kawsar Ahmed | Hasan Mesbaul Ali Taher | Jawad Hossain | Shawly Ahsan | Mohammed Moshiul Hoque
Proceedings of the Fourth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages

In this modern era, many people have been using Facebook and Twitter, leading to increased information sharing and communication. However, a considerable amount of information on these platforms is misleading or intentionally crafted to deceive users, which is often termed as fake news. A shared task on fake news detection in Malayalam organized by DravidianLangTech@EACL 2024 allowed us for addressing the challenge of distinguishing between original and fake news content in the Malayalam language. Our approach involves creating an intelligent framework to categorize text as either fake or original. We experimented with various machine learning models, including Logistic Regression, Decision Tree, Random Forest, Multinomial Naive Bayes, SVM, and SGD, and various deep learning models, including CNN, BiLSTM, and BiLSTM + Attention. We also explored Indic-BERT, MuRIL, XLM-R, and m-BERT for transformer-based approaches. Notably, our most successful model, m-BERT, achieved a macro F1 score of 0.85 and ranked 4th in the shared task. This research contributes to combating misinformation on social media news, offering an effective solution to classify content accurately.

2023

pdf bib
Score_IsAll_You_Need at BLP-2023 Task 1: A Hierarchical Classification Approach to Detect Violence Inciting Text using Transformers
Kawsar Ahmed | Md Osama | Md. Sirajul Islam | Md Taosiful Islam | Avishek Das | Mohammed Moshiul Hoque
Proceedings of the First Workshop on Bangla Language Processing (BLP-2023)

Violence-inciting text detection has become critical due to its significance in social media monitoring, online security, and the prevention of violent content. Developing an automatic text classification model for identifying violence in languages with limited resources, like Bangla, poses significant challenges due to the scarcity of resources and complex morphological structures. This work presents a transformer-based method that can classify Bangla texts into three violence classes: direct, passive, and non-violence. We leveraged transformer models, including BanglaBERT, XLM-R, and m-BERT, to develop a hierarchical classification model for the downstream task. In the first step, the BanglaBERT is employed to identify the presence of violence in the text. In the next step, the model classifies stem texts that incite violence as either direct or passive. The developed system scored 72.37 and ranked 14th among the participants.