Max Ploner


2025

pdf bib
Familiarity: Better Evaluation of Zero-Shot Named Entity Recognition by Quantifying Label Shifts in Synthetic Training Data
Jonas Golde | Patrick Haller | Max Ploner | Fabio Barth | Nicolaas Jedema | Alan Akbik
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Zero-shot named entity recognition (NER) is the task of detecting named entities of specific types (such as Person or Medicine) without any training examples. Current research increasingly relies on large synthetic datasets, automatically generated to cover tens of thousands of distinct entity types, to train zero-shot NER models. However, in this paper, we find that these synthetic datasets often contain entity types that are semantically highly similar to (or even the same as) those in standard evaluation benchmarks. Because of this overlap, we argue that reported F1 scores for zero-shot NER overestimate the true capabilities of these approaches. Further, we argue that current evaluation setups provide an incomplete picture of zero-shot abilities since they do not quantify the label shift (i.e., the similarity of labels) between training and evaluation datasets. To address these issues, we propose Familarity, a novel metric that captures both the semantic similarity between entity types in training and evaluation, as well as their frequency in the training data, to provide an estimate of label shift. It allows researchers to contextualize reported zero-shot NER scores when using custom synthetic training datasets. Further, it enables researchers to generate evaluation setups of various transfer difficulties for fine-grained analysis of zero-shot NER.

pdf bib
LM-Pub-Quiz: A Comprehensive Framework for Zero-Shot Evaluation of Relational Knowledge in Language Models
Max Ploner | Jacek Wiland | Sebastian Pohl | Alan Akbik
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)

Knowledge probing evaluates to which extent a language model (LM) has acquired relational knowledge during its pre-training phase. It provides a cost-effective means of comparing LMs of different sizes and training setups and is useful for monitoring knowledge gained or lost during continual learning (CL). In prior work, we presented an improved knowledge probe called BEAR (Wiland et al., 2024), which enables the comparison of LMs trained with different pre-training objectives (causal and masked LMs) and addresses issues of skewed distributions in previous probes to deliver a more unbiased reading of LM knowledge. With this paper, we present LM-Pub-Quiz, a Python framework and leaderboard built around the BEAR probing mechanism that enables researchers and practitioners to apply it in their work. It provides options for standalone evaluation and direct integration into the widely-used training pipeline of the Hugging Face transformers library. Further, it provides a fine-grained analysis of different knowledge types to assist users in better understanding the knowledge in each evaluated LM. We publicly release LM-Pub-Quiz as an open-source project.https://lm-pub-quiz.github.io/

pdf bib
TransformerRanker: A Tool for Efficiently Finding the Best-Suited Language Models for Downstream Classification Tasks
Lukas Garbas | Max Ploner | Alan Akbik
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)

Classification tasks in NLP are typically addressed by selecting a pre-trained language model (PLM) from a model hub, and fine-tuning it for the task at hand. However, given the very large number of PLMs that are currently available, a practical challenge is to determine which of them will perform best for a specific downstream task. With this paper, we introduce TransformerRanker, a lightweight library that efficiently ranks PLMs for classification tasks without the need for computationally costly fine-tuning. Our library implements current approaches for transferability estimation (LogME, H-Score, kNN), in combination with layer aggregation options, which we empirically showed to yield state-of-the-art rankings of PLMs (Garbas et al., 2024). We designed the interface to be lightweight and easy to use, allowing users to directly connect to the HuggingFace Transformers and Dataset libraries. Users need only select a downstream classification task and a list of PLMs to create a ranking of likely best-suited PLMs for their task. We make TransformerRanker available as a pip-installable open-source library.

2024

pdf bib
Parameter-Efficient Fine-Tuning: Is There An Optimal Subset of Parameters to Tune?
Max Ploner | Alan Akbik
Findings of the Association for Computational Linguistics: EACL 2024

The ever-growing size of pretrained language models (PLM) presents a significant challenge for efficiently fine-tuning and deploying these models for diverse sets of tasks within memory-constrained environments.In light of this, recent research has illuminated the possibility of selectively updating only a small subset of a model’s parameters during the fine-tuning process.Since no new parameters or modules are added, these methods retain the inference speed of the original model and come at no additional computational cost. However, an open question pertains to which subset of parameters should best be tuned to maximize task performance and generalizability. To investigate, this paper presents comprehensive experiments covering a large spectrum of subset selection strategies. We comparatively evaluate their impact on model performance as well as the resulting model’s capability to generalize to different tasks.Surprisingly, we find that the gains achieved in performance by elaborate selection strategies are, at best, marginal when compared to the outcomes obtained by tuning a random selection of parameter subsets. Our experiments also indicate that selection-based tuning impairs generalizability to new tasks.

pdf bib
BEAR: A Unified Framework for Evaluating Relational Knowledge in Causal and Masked Language Models
Jacek Wiland | Max Ploner | Alan Akbik
Findings of the Association for Computational Linguistics: NAACL 2024

Knowledge probing assesses to which degree a language model (LM) has successfully learned relational knowledge during pre-training. Probing is an inexpensive way to compare LMs of different sizes and training configurations. However, previous approaches rely on the objective function used in pre-training LMs and are thus applicable only to masked or causal LMs. As a result, comparing different types of LMs becomes impossible. To address this, we propose an approach that uses an LM’s inherent ability to estimate the log-likelihood of any given textual statement. We carefully design an evaluation dataset of 7,731 instances (40,916 in a larger variant) from which we produce alternative statements for each relational fact, one of which is correct. We then evaluate whether an LM correctly assigns the highest log-likelihood to the correct statement. Our experimental evaluation of 22 common LMs shows that our proposed framework, BEAR, can effectively probe for knowledge across different LM types. We release the BEAR datasets and an open-source framework that implements the probing approach to the research community to facilitate the evaluation and development of LMs.

pdf bib
Choose Your Transformer: Improved Transferability Estimation of Transformer Models on Classification Tasks
Lukas Garbaciauskas | Max Ploner | Alan Akbik
Findings of the Association for Computational Linguistics: ACL 2024

There currently exists a multitude of pre-trained transformer language models (LMs) that are readily available. From a practical perspective, this raises the question of which pre-trained LM will perform best if fine-tuned for a specific downstream NLP task. However, exhaustively fine-tuning all available LMs to determine the best-fitting model is computationally infeasible. To address this problem, we present an approach that inexpensively estimates a ranking of the expected performance of a given set of candidate LMs for a given task. Following a layer-wise representation analysis, we extend existing approaches such as H-score and LogME by aggregating representations across all layers of the transformer model. We present an extensive analysis of 20 transformer LMs, 6 downstream NLP tasks, and various estimators (linear probing, kNN, H-score, and LogME). Our evaluation finds that averaging the layer representations significantly improves the Pearson correlation coefficient between the true model ranks and the estimate, increasing from 0.58 to 0.86 for LogME and from 0.65 to 0.88 for H-score.