2025
pdf
bib
abs
Disentangling language change: sparse autoencoders quantify the semantic evolution of indigeneity in French
Jacob A. Matthews
|
Laurent Dubreuil
|
Imane Terhmina
|
Yunci Sun
|
Matthew Wilkens
|
Marten Van Schijndel
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
This study presents a novel approach to analyzing historical language change, focusing on the evolving semantics of the French term “indigène(s)” (“indigenous”) between 1825 and 1950. While existing approaches to measuring semantic change with contextual word embeddings (CWE) rely primarily on similarity measures or clustering, these methods may not be suitable for highly imbalanced datasets, and pose challenges for interpretation. For this reason, we propose an interpretable, feature-level approach to analyzing language change, which we use to trace the semantic evolution of “indigène(s)” over a 125-year period. Following recent work on sequence embeddings (O’Neill et al., 2024), we use k-sparse autoencoders (k-SAE) (Makhzani and Frey, 2013) to interpret over 210,000 CWEs generated using sentences sourced from the French National Library. We demonstrate that k-SAEs can learn interpretable features from CWEs, as well as how differences in feature activations across time periods reveal highly specific aspects of language change. In addition, we show that diachronic change in feature activation frequency reflects the evolution of French colonial legal structures during the 19th and 20th centuries.
pdf
bib
abs
A City of Millions: Mapping Literary Social Networks At Scale
Sil Hamilton
|
Rebecca Hicke
|
David Mimno
|
Matthew Wilkens
Proceedings of the 5th International Conference on Natural Language Processing for Digital Humanities
We release 70,509 high-quality social networks extracted from multilingual fiction and nonfiction narratives. We additionally provide metadata for ~30,000 of these texts (73% nonfiction and 27% fiction) written between 1800 and 1999 in 58 languages. This dataset provides information on historical social worlds at an unprecedented scale, including data for 2,510,021 individuals in 2,805,482 pair-wise relationships annotated for affinity and relationship type. We achieve this scale by automating previously manual methods of extracting social networks; specifically, we adapt an existing annotation task as a language model prompt, ensuring consistency at scale with the use of structured output. This dataset serves as a unique resource for humanities and social science research by providing data on cognitive models of social realities.
2023
pdf
bib
abs
Grounding Characters and Places in Narrative Text
Sandeep Soni
|
Amanpreet Sihra
|
Elizabeth Evans
|
Matthew Wilkens
|
David Bamman
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Tracking characters and locations throughout a story can help improve the understanding of its plot structure. Prior research has analyzed characters and locations from text independently without grounding characters to their locations in narrative time. Here, we address this gap by proposing a new spatial relationship categorization task. The objective of the task is to assign a spatial relationship category for every character and location co-mention within a window of text, taking into consideration linguistic context, narrative tense, and temporal scope. To this end, we annotate spatial relationships in approximately 2500 book excerpts and train a model using contextual embeddings as features to predict these relationships. When applied to a set of books, this model allows us to test several hypotheses on mobility and domestic space, revealing that protagonists are more mobile than non-central characters and that women as characters tend to occupy more interior space than men. Overall, our work is the first step towards joint modeling and analysis of characters and places in narrative text.
pdf
bib
abs
Modeling Legal Reasoning: LM Annotation at the Edge of Human Agreement
Rosamond Thalken
|
Edward Stiglitz
|
David Mimno
|
Matthew Wilkens
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Generative language models (LMs) are increasingly used for document class-prediction tasks and promise enormous improvements in cost and efficiency. Existing research often examines simple classification tasks, but the capability of LMs to classify on complex or specialized tasks is less well understood. We consider a highly complex task that is challenging even for humans: the classification of legal reasoning according to jurisprudential philosophy. Using a novel dataset of historical United States Supreme Court opinions annotated by a team of domain experts, we systematically test the performance of a variety of LMs. We find that generative models perform poorly when given instructions (i.e. prompts) equal to the instructions presented to human annotators through our codebook. Our strongest results derive from fine-tuning models on the annotated dataset; the best performing model is an in-domain model, LEGAL-BERT. We apply predictions from this fine-tuned model to study historical trends in jurisprudence, an exercise that both aligns with prominent qualitative historical accounts and points to areas of possible refinement in those accounts. Our findings generally sound a note of caution in the use of generative LMs on complex tasks without fine-tuning and point to the continued relevance of human annotation-intensive classification methods.