This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Dancing to music with lyrics is a popular form of expression. While it is generally accepted that there are relationships between lyrics and dance motions, previous studies have not explored these relationships. A major challenge is that the relationships between lyrics and dance motions are not constant throughout a song but are instead localized to specific parts. To address this challenge, we hypothesize that lyrics and dance motions that co-occur across multiple songs are related. Based on this hypothesis, we propose a novel data-driven method to detect the parts of songs where meaningful relationships between lyrics and dance motions exist. We use clustering to transform lyrics and dance motions into symbols, enabling the calculation of co-occurrence frequencies and detection of significant correlations. The effectiveness of our method is validated by a dataset of time-synchronized lyrics and dance motions, which showed high correlation values for emotionally salient lyrics such as “love”, which is expressed in heart-shaped motions. Furthermore, using our relationship detection method, we propose a method for retrieving dance motions from lyrics that outperforms previous text-to-motion retrieval methods, which focus on prose and non-dance motions.
This paper presents a novel, data-driven language model that produces entire lyrics for a given input melody. Previously proposed models for lyrics generation suffer from the inability of capturing the relationship between lyrics and melody partly due to the unavailability of lyrics-melody aligned data. In this study, we first propose a new practical method for creating a large collection of lyrics-melody aligned data and then create a collection of 1,000 lyrics-melody pairs augmented with precise syllable-note alignments and word/sentence/paragraph boundaries. We then provide a quantitative analysis of the correlation between word/sentence/paragraph boundaries in lyrics and melodies. We then propose an RNN-based lyrics language model conditioned on a featurized melody. Experimental results show that the proposed model generates fluent lyrics while maintaining the compatibility between boundaries of lyrics and melody structures.
This study proposes a computational model of the discourse segments in lyrics to understand and to model the structure of lyrics. To test our hypothesis that discourse segmentations in lyrics strongly correlate with repeated patterns, we conduct the first large-scale corpus study on discourse segments in lyrics. Next, we propose the task to automatically identify segment boundaries in lyrics and train a logistic regression model for the task with the repeated pattern and textual features. The results of our empirical experiments illustrate the significance of capturing repeated patterns in predicting the boundaries of discourse segments in lyrics.