Mario Rodríguez-Cantelar

Also published as: Mario Rodriguez-Cantelar


2025

pdf bib
Cutting Through Overload: Efficient Token Dropping for Speech Emotion Recognition in Multimodal Large Language Models
Jaime Bellver-Soler | Mario Rodriguez-Cantelar | Ricardo Córdoba | Luis Fernando D’Haro
Proceedings of the 15th International Workshop on Spoken Dialogue Systems Technology

Recent developments in Multimodal Large Language Models (MLLMs) have provided novel insights into Speech Emotion Recognition (SER). However, combining high-dimensional speech signals with textual tokens can lead to a rapid growth in input tokens, increasing computational costs and inference times. This “token overload” also risks shadowing essential textual cues, affecting the reasoning capabilities of the language model and diluting emotional information crucial to accurate SER. In this paper, we explore different token drop methods that mitigate excessive token counts while preserving both emotional nuances and the core linguistic capabilities of the model. Specifically, we compare various pooling approaches to produce a compact representation. Our preliminary findings suggest that these techniques can reduce computational costs without decreasing SER accuracy.

2023

pdf bib
Overview of Robust and Multilingual Automatic Evaluation Metricsfor Open-Domain Dialogue Systems at DSTC 11 Track 4
Mario Rodríguez-Cantelar | Chen Zhang | Chengguang Tang | Ke Shi | Sarik Ghazarian | João Sedoc | Luis Fernando D’Haro | Alexander I. Rudnicky
Proceedings of the Eleventh Dialog System Technology Challenge

The advent and fast development of neural networks have revolutionized the research on dialogue systems and subsequently have triggered various challenges regarding their automatic evaluation. Automatic evaluation of open-domain dialogue systems as an open challenge has been the center of the attention of many researchers. Despite the consistent efforts to improve automatic metrics’ correlations with human evaluation, there have been very few attempts to assess their robustness over multiple domains and dimensions. Also, their focus is mainly on the English language. All of these challenges prompt the development of automatic evaluation metrics that are reliable in various domains, dimensions, and languages. This track in the 11th Dialogue System Technology Challenge (DSTC11) is part of the ongoing effort to promote robust and multilingual automatic evaluation metrics. This article describes the datasets and baselines provided to participants and discusses the submission and result details of the two proposed subtasks.