Maja Mataric
2025
Using Linguistic Entrainment to Evaluate Large Language Models for Use in Cognitive Behavioral Therapy
Mina Kian
|
Kaleen Shrestha
|
Katrin Fischer
|
Xiaoyuan Zhu
|
Jonathan Ong
|
Aryan Trehan
|
Jessica Wang
|
Gloria Chang
|
Séb Arnold
|
Maja Mataric
Findings of the Association for Computational Linguistics: NAACL 2025
Entrainment, the responsive communication between interacting individuals, is a crucial process in building a strong relationship between a mental health therapist and their client, leading to positive therapeutic outcomes. However, so far entrainment has not been investigated as a measure of efficacy of large language models (LLMs) delivering mental health therapy. In this work, we evaluate the linguistic entrainment of an LLM (ChatGPT 3.5-turbo) in a mental health dialog setting. We first validate computational measures of linguistic entrainment with two measures of the quality of client self-disclosures: intimacy and engagement (p < 0.05). We then compare the linguistic entrainment of the LLM to trained therapists and non-expert online peer supporters in a cognitive behavioral therapy (CBT) setting. We show that the LLM is outperformed by humans with respect to linguistic entrainment (p < 0.001). These results support the need to be cautious in using LLMs out-of-the-box for mental health applications.
Search
Fix data
Co-authors
- Séb Arnold 1
- Gloria Chang 1
- Katrin Fischer 1
- Mina Kian 1
- Jonathan Ong 1
- show all...