Liyan Wang


2025

pdf bib
AnaScore: Understanding Semantic Parallelism in Proportional Analogies
Liyan Wang | Haotong Wang | Yves Lepage
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Formulaic criteria for proportional analogies, which capture relational mappings between two ratios of terms, are mainly confined to the formal level. As analogy datasets grow more complex, especially in evaluating the cognitive abilities of Large Language Models (LLMs), assessing parallelism in them becomes increasingly challenging and often requires human annotation. In this work, we propose AnaScore, an automatic metric for evaluating the strength of semantic parallelism in sentence analogies. AnaScore systematically provides formalized explanations for shared relational patterns at the level of conceptual knowledge. We apply AnaScore to annotate several existing datasets, considering different directions of the relations, and uncover artifacts in data construction. Our experiments with various LLMs demonstrate the efficacy of the AnaScore metric in capturing the inherent quality of analogical relationships, showing a positive correlation between analogy quality and model performance. Thanks to this metric, we clearly demonstrate that formally explainable examples are more beneficial for analogical reasoning, while ambiguous analogies with no clear criterion tend to hinder inference.

2024

pdf bib
Continued Pre-training on Sentence Analogies for Translation with Small Data
Liyan Wang | Haotong Wang | Yves Lepage
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

This paper introduces Continued Pre-training on Analogies (CPoA) to incorporate pre-trained language models with analogical abilities, aiming at improving performance in low-resource translations without data augmentation. We continue training the models on sentence analogies retrieved from a translation corpus. Considering the sparsity of analogy in corpora, especially in low-resource scenarios, we propose exploring approximate analogies between sentences. We attempt to find sentence analogies that might not conform to formal criteria for entire sentences but partial pieces. When training the models, we introduce a weighting scalar pertaining to the quality of analogies to adjust the influence: emphasizing closer analogies while diminishing the impact of far ones. We evaluate our approach on a low-resource translation task: German-Upper Sorbian. The results show that CPoA using 10 times fewer instances can effectively attain gains of +1.4 and +1.3 BLEU points over the original model in two translation directions. This improvement is more pronounced when there are fewer parallel examples.

2020

pdf bib
Réseaux de neurones pour la résolution d’analogies entre phrases en traduction automatique par l’exemple (Neural networks for the resolution of analogies between sentences in EBMT )
Valentin Taillandier | Liyan Wang | Yves Lepage
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 2 : Traitement Automatique des Langues Naturelles

Cet article propose un modèle de réseau de neurones pour la résolution d’équations analogiques au niveau sémantique et entre phrases dans le cadre de la traduction automatique par l’exemple. Son originalité réside dans le fait qu’il fusionne les deux approches, directe et indirecte, de la traduction par l’exemple.