Lei Ma


2025

pdf bib
Multilingual Blending: Large Language Model Safety Alignment Evaluation with Language Mixture
Jiayang Song | Yuheng Huang | Zhehua Zhou | Lei Ma
Findings of the Association for Computational Linguistics: NAACL 2025

As safety remains a crucial concern throughout the development lifecycle of Large Language Models (LLMs), researchers and industrial practitioners have increasingly focused on safeguarding and aligning LLM behaviors with human preferences and ethical standards. LLMs, trained on extensive multilingual corpora, exhibit powerful generalization abilities across diverse languages and domains. However, current safety alignment practices predominantly focus on single-language scenarios, which leaves their effectiveness in complex multilingual contexts, especially for those complex mixed-language formats, largely unexplored. In this study, we introduce Multilingual Blending, a mixed-language query-response scheme designed to evaluate the safety alignment of various state-of-the-art LLMs (e.g., GPT-4o, GPT 3.5, Llama3) under sophisticated, multilingual conditions. We further investigate language patterns such as language availability, morphology, and language family that could impact the effectiveness of Multilingual Blending in compromising the safeguards of LLMs. Our experimental results show that, without meticulously crafted prompt templates, Multilingual Blending significantly amplifies the detriment of malicious queries, leading to dramatically increased bypass rates in LLM safety alignment (67.23% on GPT-3.5 and 40.34% on GPT-4o), far exceeding those of single-language baselines. Moreover, the performance of Multilingual Blending varies notably based on intrinsic linguistic properties, with languages of different morphology and from diverse families being more prone to evading safety alignments. These findings underscore the necessity of evaluating LLMs and developing corresponding safety alignment strategies in a complex, multilingual context to align with their superior cross-language generalization capabilities.

pdf bib
TESTEVAL: Benchmarking Large Language Models for Test Case Generation
Wenhan Wang | Chenyuan Yang | Zhijie Wang | Yuheng Huang | Zhaoyang Chu | Da Song | Lingming Zhang | An Ran Chen | Lei Ma
Findings of the Association for Computational Linguistics: NAACL 2025

For program languages, testing plays a crucial role in the software development cycle, enabling the detection of bugs, vulnerabilities, and other undesirable behaviors. To perform software testing, testers need to write code snippets that execute the program under test. Recently, researchers have recognized the potential of large language models (LLMs) in software testing. However, there remains a lack of fair comparisons between different LLMs in terms of test case generation capabilities.In this paper, we propose TestEval, a novel benchmark for test case generation with LLMs. We collect 210 Python programs from an online programming platform, LeetCode, and design three different tasks: overall coverage, targeted line/branch coverage, and targeted path coverage. We further evaluate 17 popular LLMs, including both commercial and open-source ones, on TestEval. We find that generating test cases to cover specific program lines/branches/paths is still challenging for current LLMs, indicating a lack of ability to comprehend program logic and execution paths.

2024

pdf bib
PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics
Derui Zhu | Dingfan Chen | Qing Li | Zongxiong Chen | Lei Ma | Jens Grossklags | Mario Fritz
Findings of the Association for Computational Linguistics: NAACL 2024

pdf bib
CIF-Bench: A Chinese Instruction-Following Benchmark for Evaluating the Generalizability of Large Language Models
Yizhi Li | Ge Zhang | Xingwei Qu | Jiali Li | Zhaoqun Li | Noah Wang | Hao Li | Ruibin Yuan | Yinghao Ma | Kai Zhang | Wangchunshu Zhou | Yiming Liang | Lei Zhang | Lei Ma | Jiajun Zhang | Zuowen Li | Wenhao Huang | Chenghua Lin | Jie Fu
Findings of the Association for Computational Linguistics: ACL 2024

The advancement of large language models (LLMs) has enhanced the ability to generalize across a wide range of unseen natural language processing (NLP) tasks through instruction-following.Yet, their effectiveness often diminishes in low-resource languages like Chinese, exacerbated by biased evaluations from data leakage, casting doubt on their true generalizability to new linguistic territories. In response, we introduce the Chinese Instruction-Following Benchmark (**CIF-Bench**), designed to evaluate the zero-shot generalizability of LLMs to the Chinese language. CIF-Bench comprises 150 tasks and 15,000 input-output pairs, developed by native speakers to test complex reasoning and Chinese cultural nuances across 20 categories. To mitigate data contamination, we release only half of the dataset publicly, with the remainder kept private, and introduce diversified instructions to minimize score variance, totaling 45,000 data instances.Our evaluation of 28 selected LLMs reveals a noticeable performance gap, with the best model scoring only 52.9%, highlighting the limitations of LLMs in less familiar language and task contexts.This work not only uncovers the current limitations of LLMs in handling Chinese language tasks but also sets a new standard for future LLM generalizability research, pushing towards the development of more adaptable, culturally informed, and linguistically diverse models.