Kristina Miler


2025

pdf bib
PairScale: Analyzing Attitude Change with Pairwise Comparisons
Rupak Sarkar | Patrick Y. Wu | Kristina Miler | Alexander Miserlis Hoyle | Philip Resnik
Findings of the Association for Computational Linguistics: NAACL 2025

We introduce a text-based framework for measuring attitudes in communities toward issues of interest, going beyond the pro/con/neutral of conventional stance detection to characterize attitudes on a continuous scale using both implicit and explicit evidence in language. The framework exploits LLMs both to extract attitude-related evidence and to perform pairwise comparisons that yield unidimensional attitude scores via the classic Bradley-Terry model. We validate the LLM-based steps using human judgments, and illustrate the utility of the approach for social science by examining the evolution of attitudes on two high-profile issues in U.S. politics in two political communities on Reddit over the period spanning from the 2016 presidential campaign to the 2022 mid-term elections. WARNING: Potentially sensitive political content.

2015

pdf bib
Tea Party in the House: A Hierarchical Ideal Point Topic Model and Its Application to Republican Legislators in the 112th Congress
Viet-An Nguyen | Jordan Boyd-Graber | Philip Resnik | Kristina Miler
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)