Kimihiro Hasegawa


2025

pdf bib
ProMQA: Question Answering Dataset for Multimodal Procedural Activity Understanding
Kimihiro Hasegawa | Wiradee Imrattanatrai | Zhi-Qi Cheng | Masaki Asada | Susan Holm | Yuran Wang | Ken Fukuda | Teruko Mitamura
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Multimodal systems have great potential to assist humans in procedural activities, where people follow instructions to achieve their goals. Despite diverse application scenarios, systems are typically evaluated on traditional classification tasks, e.g., action recognition or temporal action localization. In this paper, we present a novel evaluation dataset, ProMQA, to measure the advancement of systems in application-oriented scenarios. ProMQA consists of 401 multimodal procedural QA pairs on user recording of procedural activities, i.e., cooking, coupled with their corresponding instruction. For QA annotation, we take a cost-effective human-LLM collaborative approach, where the existing annotation is augmented with LLM-generated QA pairs that are later verified by humans. We then provide the benchmark results to set the baseline performance on ProMQA. Our experiment reveals a significant gap between human performance and that of current systems, including competitive proprietary multimodal models. We hope our dataset sheds light on new aspects of models’ multimodal understanding capabilities.

2021

pdf bib
Cross-document Event Identity via Dense Annotation
Adithya Pratapa | Zhengzhong Liu | Kimihiro Hasegawa | Linwei Li | Yukari Yamakawa | Shikun Zhang | Teruko Mitamura
Proceedings of the 25th Conference on Computational Natural Language Learning

In this paper, we study the identity of textual events from different documents. While the complex nature of event identity is previously studied (Hovy et al., 2013), the case of events across documents is unclear. Prior work on cross-document event coreference has two main drawbacks. First, they restrict the annotations to a limited set of event types. Second, they insufficiently tackle the concept of event identity. Such annotation setup reduces the pool of event mentions and prevents one from considering the possibility of quasi-identity relations. We propose a dense annotation approach for cross-document event coreference, comprising a rich source of event mentions and a dense annotation effort between related document pairs. To this end, we design a new annotation workflow with careful quality control and an easy-to-use annotation interface. In addition to the links, we further collect overlapping event contexts, including time, location, and participants, to shed some light on the relation between identity decisions and context. We present an open-access dataset for cross-document event coreference, CDEC-WN, collected from English Wikinews and open-source our annotation toolkit to encourage further research on cross-document tasks.

2018

pdf bib
Textual Entailment based Question Generation
Takaaki Matsumoto | Kimihiro Hasegawa | Yukari Yamakawa | Teruko Mitamura
Proceedings of the Workshop on Intelligent Interactive Systems and Language Generation (2IS&NLG)