Katy Gero


2025

pdf bib
Proceedings of the Fourth Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2025)
Vishakh Padmakumar | Katy Gero | Thiemo Wambsganss | Sarah Sterman | Ting-Hao Huang | David Zhou | John Chung
Proceedings of the Fourth Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2025)

pdf bib
Augmented Close Reading for Classical Latin using BERT for Intertextual Exploration
Ashley Gong | Katy Gero | Mark Schiefsky
Proceedings of the 5th International Conference on Natural Language Processing for Digital Humanities

Intertextuality, the connection between texts, is a critical literary concept for analyzing classical Latin works. Given the emergence of AI in digital humanities, this paper presents Intertext.AI, a novel interface that leverages Latin BERT (Bamman and Burns 2020), a BERT model trained on classical Latin texts, and contextually rich visualizations to help classicists find potential intertextual connections. Intertext.AI identified over 80% of attested allusions from excerpts of Lucan's Pharsalia, demonstrating the system's technical efficacy. Our findings from a user study with 19 participants also suggest that Intertext.AI fosters intertextual discovery and interpretation more easily than other tools. While participants did not identify significantly different types or quantities of connections when using Intertext.AI or other tools, they overall found finding and justifying potential intertextuality easier with Intertext.AI, reported higher confidence in their observations from Intertext.AI, and preferred having access to it during the search process.

2022

pdf bib
A Design Space for Writing Support Tools Using a Cognitive Process Model of Writing
Katy Gero | Alex Calderwood | Charlotte Li | Lydia Chilton
Proceedings of the First Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2022)

Improvements in language technology have led to an increasing interest in writing support tools. In this paper we propose a design space for such tools based on a cognitive process model of writing. We conduct a systematic review of recent computer science papers that present and/or study such tools, analyzing 30 papers from the last five years using the design space. Tools are plotted according to three distinct cognitive processes–planning, translating, and reviewing–and the level of constraint each process entails. Analyzing recent work with the design space shows that highly constrained planning and reviewing are under-studied areas that recent technology improvements may now be able to serve. Finally, we propose shared evaluation methodologies and tasks that may help the field mature.

pdf bib
Sparks: Inspiration for Science Writing using Language Models
Katy Gero | Vivian Liu | Lydia Chilton
Proceedings of the First Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2022)

Large-scale language models are rapidly improving, performing well on a variety of tasks with little to no customization. In this work we investigate how language models can support science writing, a challenging writing task that is both open-ended and highly constrained. We present a system for generating “sparks”, sentences related to a scientific concept intended to inspire writers. We run a user study with 13 STEM graduate students and find three main use cases of sparks—inspiration, translation, and perspective—each of which correlates with a unique interaction pattern. We also find that while participants were more likely to select higher quality sparks, the overall quality of sparks seen by a given participant did not correlate with their satisfaction with the tool.

2019

pdf bib
Low Level Linguistic Controls for Style Transfer and Content Preservation
Katy Gero | Chris Kedzie | Jonathan Reeve | Lydia Chilton
Proceedings of the 12th International Conference on Natural Language Generation

Despite the success of style transfer in image processing, it has seen limited progress in natural language generation. Part of the problem is that content is not as easily decoupled from style in the text domain. Curiously, in the field of stylometry, content does not figure prominently in practical methods of discriminating stylistic elements, such as authorship and genre. Rather, syntax and function words are the most salient features. Drawing on this work, we model style as a suite of low-level linguistic controls, such as frequency of pronouns, prepositions, and subordinate clause constructions. We train a neural encoder-decoder model to reconstruct reference sentences given only content words and the setting of the controls. We perform style transfer by keeping the content words fixed while adjusting the controls to be indicative of another style. In experiments, we show that the model reliably responds to the linguistic controls and perform both automatic and manual evaluations on style transfer. We find we can fool a style classifier 84% of the time, and that our model produces highly diverse and stylistically distinctive outputs. This work introduces a formal, extendable model of style that can add control to any neural text generation system.

2018

pdf bib
Challenges in Finding Metaphorical Connections
Katy Gero | Lydia Chilton
Proceedings of the Workshop on Figurative Language Processing

Poetry is known for its novel expression using figurative language. We introduce a writing task that contains the essential challenges of generating meaningful figurative language and can be evaluated. We investigate how to find metaphorical connections between abstract themes and concrete domains by asking people to write four-line poems on a given metaphor, such as “death is a rose” or “anger is wood”. We find that only 21% of poems successfully make a metaphorical connection. We present five alternate ways people respond to the prompt and release our dataset of 100 categorized poems. We suggest opportunities for computational approaches.