Juan Manuel Pérez


2025

pdf bib
Exploring Large Language Models for Hate Speech Detection in Rioplatense Spanish
Juan Manuel Pérez | Paula Miguel | Viviana Cotik
Findings of the Association for Computational Linguistics: NAACL 2025

Hate speech detection deals with many language variants, slang, slurs, expression modalities, and cultural nuances. This outlines the importance of working with specific corpora, when addressing hate speech within the scope of Natural Language Processing, recently revolutionized by the irruption of Large Language Models. This work presents a brief analysis of the performance of large language models in the detection of Hate Speech for Rioplatense Spanish. We performed classification experiments leveraging chain-of-thought reasoning with ChatGPT 3.5, Mixtral, and Aya, comparing their results with those of a state-of-the-art BERT classifier. These experiments outline that, even if large language models show a lower precision compared to the fine-tuned BERT classifier and, in some cases, they find hard-to-get slurs or colloquialisms, they still are sensitive to highly nuanced cases (particularly, homophobic/transphobic hate speech). We make our code and models publicly available for future research.

2022

pdf bib
RoBERTuito: a pre-trained language model for social media text in Spanish
Juan Manuel Pérez | Damián Ariel Furman | Laura Alonso Alemany | Franco M. Luque
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Since BERT appeared, Transformer language models and transfer learning have become state-of-the-art for natural language processing tasks. Recently, some works geared towards pre-training specially-crafted models for particular domains, such as scientific papers, medical documents, user-generated texts, among others. These domain-specific models have been shown to improve performance significantly in most tasks; however, for languages other than English, such models are not widely available. In this work, we present RoBERTuito, a pre-trained language model for user-generated text in Spanish, trained on over 500 million tweets. Experiments on a benchmark of tasks involving user-generated text showed that RoBERTuito outperformed other pre-trained language models in Spanish. In addition to this, our model has some cross-lingual abilities, achieving top results for English-Spanish tasks of the Linguistic Code-Switching Evaluation benchmark (LinCE) and also competitive performance against monolingual models in English Twitter tasks. To facilitate further research, we make RoBERTuito publicly available at the HuggingFace model hub together with the dataset used to pre-train it.

2020

pdf bib
ANDES at SemEval-2020 Task 12: A Jointly-trained BERT Multilingual Model for Offensive Language Detection
Juan Manuel Pérez | Aymé Arango | Franco Luque
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper describes our participation in SemEval-2020 Task 12: Multilingual Offensive Language Detection. We jointly-trained a single model by fine-tuning Multilingual BERT to tackle the task across all the proposed languages: English, Danish, Turkish, Greek and Arabic. Our single model had competitive results, with a performance close to top-performing systems in spite of sharing the same parameters across all languages. Zero-shot and few-shot experiments were also conducted to analyze the transference performance among these languages. We make our code public for further research

2019

pdf bib
Atalaya at SemEval 2019 Task 5: Robust Embeddings for Tweet Classification
Juan Manuel Pérez | Franco M. Luque
Proceedings of the 13th International Workshop on Semantic Evaluation

In this article, we describe our participation in HatEval, a shared task aimed at the detection of hate speech against immigrants and women. We focused on Spanish subtasks, building from our previous experiences on sentiment analysis in this language. We trained linear classifiers and Recurrent Neural Networks, using classic features, such as bag-of-words, bag-of-characters, and word embeddings, and also with recent techniques such as contextualized word representations. In particular, we trained robust task-oriented subword-aware embeddings and computed tweet representations using a weighted-averaging strategy. In the final evaluation, our systems showed competitive results for both Spanish subtasks ES-A and ES-B, achieving the first and fourth places respectively.