Aspect-based sentiment analysis (ABSA) is a challenging task of extracting sentiments along with their corresponding aspects and opinion terms from the text.The inherent subjectivity of span annotation makes variability in the surface forms of extracted terms, complicating the evaluation process.Traditional evaluation methods often constrain ground truths (GT) to a single term, potentially misrepresenting the accuracy of semantically valid predictions that differ in surface form.To address this limitation, we propose a novel and fully automated pipeline that expands existing evaluation sets by adding alternative valid terms for aspect and opinion. Our approach facilitates an equitable assessment of language models by accommodating multiple-answer candidates, resulting in enhanced human agreement compared to single-answer test sets (achieving up to a 10%p improvement in Kendall’s Tau score).Experimental results demonstrate that our expanded evaluation set helps uncover the capabilities of large language models (LLMs) in ABSA tasks, which is concealed by the single-answer GT sets.Consequently, our work contributes to the development of a flexible evaluation framework for ABSA by embracing diverse surface forms to span extraction tasks in a cost-effective and reproducible manner.Our code and dataset is open at https://github.com/dudrrm/zoom-in-n-out-absa.
To reliably deploy Large Language Models (LLMs) in a specific country, they must possess an understanding of the nation’s culture and basic knowledge. To this end, we introduce National Alignment, which measures the alignment between an LLM and a targeted country from two aspects: social value alignment and common knowledge alignment. We constructed KorNAT, the first benchmark that measures national alignment between LLMs and South Korea. KorNat contains 4K and 6K multiple-choice questions for social value and common knowledge, respectively. To attain an appropriately aligned ground truth in the social value dataset, we conducted a large-scale public survey with 6,174 South Koreans. For common knowledge, we created the data based on the South Korea text books and GED exams. Our dataset creation process is meticulously designed based on statistical sampling theory, and we also introduce metrics to measure national alignment, including three variations of social value alignment. We tested seven LLMs and found that only few models passed our reference score, indicating there exists room for improvement. Our dataset has received government approval following an assessment by a government-affiliated organization dedicated to evaluating dataset quality.
Multi-domain Neural Machine Translation (NMT) trains a single model with multiple domains. It is appealing because of its efficacy in handling multiple domains within one model. An ideal multi-domain NMT learns distinctive domain characteristics simultaneously, however, grasping the domain peculiarity is a non-trivial task. In this paper, we investigate domain-specific information through the lens of mutual information (MI) and propose a new objective that penalizes low MI to become higher.Our method achieved the state-of-the-art performance among the current competitive multi-domain NMT models. Also, we show our objective promotes low MI to be higher resulting in domain-specialized multi-domain NMT.