Jinyue Feng


2025

pdf bib
ACCORD: Closing the Commonsense Measurability Gap
François Roewer-Després | Jinyue Feng | Zining Zhu | Frank Rudzicz
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

We present ACCORD, a framework and benchmark suite for disentangling the commonsense grounding and reasoning abilities of large language models (LLMs) through controlled, multi-hop counterfactuals. ACCORD introduces formal elements to commonsense reasoning to explicitly control and quantify reasoning complexity beyond the typical 1 or 2 hops. Uniquely, ACCORD can automatically generate benchmarks of arbitrary reasoning complexity, so it scales with future LLM improvements. Indeed, our experiments on state-of-the-art LLMs show performance degrading to below random chance with only moderate scaling, leaving substantial headroom for improvement. We release a leaderboard of the benchmark suite tested in this work, as well as code for automatically generating more complex benchmarks.

2020

pdf bib
Explainable Clinical Decision Support from Text
Jinyue Feng | Chantal Shaib | Frank Rudzicz
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Clinical prediction models often use structured variables and provide outcomes that are not readily interpretable by clinicians. Further, free-text medical notes may contain information not immediately available in structured variables. We propose a hierarchical CNN-transformer model with explicit attention as an interpretable, multi-task clinical language model, which achieves an AUROC of 0.75 and 0.78 on sepsis and mortality prediction, respectively. We also explore the relationships between learned features from structured and unstructured variables using projection-weighted canonical correlation analysis. Finally, we outline a protocol to evaluate model usability in a clinical decision support context. From domain-expert evaluations, our model generates informative rationales that have promising real-life applications.