2025
pdf
bib
abs
Omni-Chart-600K: A Comprehensive Dataset of Chart Types for Chart Understanding
Shulei Wang
|
Shuai Yang
|
Wang Lin
|
Zirun Guo
|
Sihang Cai
|
Hai Huang
|
Ye Wang
|
Jingyuan Chen
|
Tao Jin
Findings of the Association for Computational Linguistics: NAACL 2025
To address the deficiencies in chart types and the limited scope of chart tasks in existing datasets, we conducted a comprehensive review of current data collection methodologies. By integrating manual annotation with data generation leveraging GPT-4, we developed a dataset that includes 21 diverse chart types and a broad spectrum of tasks, such as data retrieval and mathematical reasoning. Our analysis of existing models revealed that capabilities in information extraction, mathematical reasoning, and understanding of multiple chart types are essential for performing a variety of chart tasks. To overcome the limitations in these areas, we devised a two-stage training strategy and a method for jointly training the vision encoder tailored for multi-type charts. In the first stage, we designed several tasks to enhance the model’s general understanding of charts, aligning multimodal large models pre-trained on natural images to chart tasks. To further improve the model’s capability to understand various chart tasks and enhance its reasoning abilities, we employed Chain-of-Thought data for training in the second stage. Through two-stage training on our proposed dataset, the pre-trained multimodal large language model achieved state-of-the-art performance across multiple chart understanding tasks, demonstrating the superiority of our data and methods.
2024
pdf
bib
abs
MPCoder: Multi-user Personalized Code Generator with Explicit and Implicit Style Representation Learning
Zhenlong Dai
|
Chang Yao
|
WenKang Han
|
Yuanying Yuanying
|
Zhipeng Gao
|
Jingyuan Chen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large Language Models (LLMs) have demonstrated great potential for assisting developers in their daily development. However, most research focuses on generating correct code, how to use LLMs to generate personalized code has seldom been investigated. To bridge this gap, we proposed MPCoder (Multi-user Personalized Code Generator) to generate personalized code for multiple users. To better learn coding style features, we utilize explicit coding style residual learning to capture the syntax code style standards and implicit style learning to capture the semantic code style conventions. We train a multi-user style adapter to better differentiate the implicit feature representations of different users through contrastive learning, ultimately enabling personalized code generation for multiple users. We further propose a novel evaluation metric for estimating similarities between codes of different coding styles. The experimental results show the effectiveness of our approach for this novel task.
2018
pdf
bib
abs
Temporally Grounding Natural Sentence in Video
Jingyuan Chen
|
Xinpeng Chen
|
Lin Ma
|
Zequn Jie
|
Tat-Seng Chua
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
We introduce an effective and efficient method that grounds (i.e., localizes) natural sentences in long, untrimmed video sequences. Specifically, a novel Temporal GroundNet (TGN) is proposed to temporally capture the evolving fine-grained frame-by-word interactions between video and sentence. TGN sequentially scores a set of temporal candidates ended at each frame based on the exploited frame-by-word interactions, and finally grounds the segment corresponding to the sentence. Unlike traditional methods treating the overlapping segments separately in a sliding window fashion, TGN aggregates the historical information and generates the final grounding result in one single pass. We extensively evaluate our proposed TGN on three public datasets with significant improvements over the state-of-the-arts. We further show the consistent effectiveness and efficiency of TGN through an ablation study and a runtime test.