Jingqian Zhao


2025

pdf bib
Mitigating Biases of Large Language Models in Stance Detection with Counterfactual Augmented Calibration
Ang Li | Jingqian Zhao | Bin Liang | Lin Gui | Hui Wang | Xi Zeng | Xingwei Liang | Kam-Fai Wong | Ruifeng Xu
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Stance detection is critical for understanding the underlying position or attitude expressed toward a topic. Large language models (LLMs) have demonstrated significant advancements across various natural language processing tasks including stance detection, however, their performance in stance detection is limited by biases and spurious correlations inherent due to their data-driven nature. Our statistical experiment reveals that LLMs are prone to generate biased stances due to sentiment-stance spurious correlations and preference towards certain individuals and topics. Furthermore, the results demonstrate a strong negative correlation between stance bias and stance detection performance, underscoring the importance of mitigating bias to enhance the utility of LLMs in stance detection. Therefore, in this paper, we propose a Counterfactual Augmented Calibration Network (FACTUAL), which a novel calibration network is devised to calibrate potential bias in the stance prediction of LLMs. Further, to address the challenge of effectively learning bias representations and the difficulty in the generalizability of debiasing, we construct counterfactual augmented data. This approach enhances the calibration network, facilitating the debiasing and out-of-domain generalization. Experimental results on in-target and zero-shot stance detection tasks show that the proposed FACTUAL can effectively mitigate biases of LLMs, achieving state-of-the-art results.

2024

pdf bib
Multi-modal Stance Detection: New Datasets and Model
Bin Liang | Ang Li | Jingqian Zhao | Lin Gui | Min Yang | Yue Yu | Kam-Fai Wong | Ruifeng Xu
Findings of the Association for Computational Linguistics: ACL 2024

Stance detection is a challenging task that aims to identify public opinion from social media platforms with respect to specific targets. Previous work on stance detection largely focused on pure texts. In this paper, we study multi-modal stance detection for tweets consisting of texts and images, which are prevalent in today’s fast-growing social media platforms where people often post multi-modal messages. To this end, we create five new multi-modal stance detection datasets of different domains based on Twitter, in which each example consists of a text and an image. In addition, we propose a simple yet effective Targeted Multi-modal Prompt Tuning framework (TMPT), where target information is leveraged to learn multi-modal stance features from textual and visual modalities. Experimental results on our five benchmark datasets show that the proposed TMPT achieves state-of-the-art performance in multi-modal stance detection.

2023

pdf bib
Stance Detection on Social Media with Background Knowledge
Ang Li | Bin Liang | Jingqian Zhao | Bowen Zhang | Min Yang | Ruifeng Xu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Identifying users’ stances regarding specific targets/topics is a significant route to learning public opinion from social media platforms. Most existing studies of stance detection strive to learn stance information about specific targets from the context, in order to determine the user’s stance on the target. However, in real-world scenarios, we usually have a certain understanding of a target when we express our stance on it. In this paper, we investigate stance detection from a novel perspective, where the background knowledge of the targets is taken into account for better stance detection. To be specific, we categorize background knowledge into two categories: episodic knowledge and discourse knowledge, and propose a novel Knowledge-Augmented Stance Detection (KASD) framework. For episodic knowledge, we devise a heuristic retrieval algorithm based on the topic to retrieve the Wikipedia documents relevant to the sample. Further, we construct a prompt for ChatGPT to filter the Wikipedia documents to derive episodic knowledge. For discourse knowledge, we construct a prompt for ChatGPT to paraphrase the hashtags, references, etc., in the sample, thereby injecting discourse knowledge into the sample. Experimental results on four benchmark datasets demonstrate that our KASD achieves state-of-the-art performance in in-target and zero-shot stance detection.