Jinchuan Tian


2025

pdf bib
ESPnet-SpeechLM: An Open Speech Language Model Toolkit
Jinchuan Tian | Jiatong Shi | William Chen | Siddhant Arora | Yoshiki Masuyama | Takashi Maekaku | Yihan Wu | Junyi Peng | Shikhar Bharadwaj | Yiwen Zhao | Samuele Cornell | Yifan Peng | Xiang Yue | Chao-Han Huck Yang | Graham Neubig | Shinji Watanabe
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)

We present ESPnet-SpeechLM, an open toolkit designed to democratize the development of speech language models (SpeechLMs) and voice-driven agentic applications. The toolkit standardizes speech processing tasks by framing them as universal sequential modeling problems, encompassing a cohesive workflow of data preprocessing, pre-training, inference, and task evaluation. With ESPnet-SpeechLM, users can easily define task templates and configure key settings, enabling seamless and streamlined SpeechLM development. The toolkit ensures flexibility, efficiency, and scalability by offering highly configurable modules for every stage of the workflow. To illustrate its capabilities, we provide multiple use cases demonstrating how competitive SpeechLMs can be constructed with ESPnet-SpeechLM, including a 1.7B-parameter model pre-trained on both text and speech tasks, across diverse benchmarks. The toolkit and its recipes are fully transparent and reproducible at: https://github.com/espnet/espnet/tree/speechlm.

pdf bib
VERSA: A Versatile Evaluation Toolkit for Speech, Audio, and Music
Jiatong Shi | Hye-jin Shim | Jinchuan Tian | Siddhant Arora | Haibin Wu | Darius Petermann | Jia Qi Yip | You Zhang | Yuxun Tang | Wangyou Zhang | Dareen Safar Alharthi | Yichen Huang | Koichi Saito | Jionghao Han | Yiwen Zhao | Chris Donahue | Shinji Watanabe
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)

In this work, we introduce VERSA, a unified and standardized evaluation toolkit designed for various speech, audio, and music signals. The toolkit features a Pythonic interface with flexible configuration and dependency control, making it user-friendly and efficient. With full installation, VERSA offers 65 metrics with 729 metric variations based on different configurations. These metrics encompass evaluations utilizing diverse external resources, including matching and non-matching reference audio, text transcriptions, and text captions. As a lightweight yet comprehensive toolkit, VERSA is versatile to support the evaluation of a wide range of downstream scenarios. To demonstrate its capabilities, this work highlights example use cases for VERSA, including audio coding, speech synthesis, speech enhancement, singing synthesis, and music generation. The toolkit is available at https://github.com/shinjiwlab/versa.

pdf bib
ESPnet-SDS: Unified Toolkit and Demo for Spoken Dialogue Systems
Siddhant Arora | Yifan Peng | Jiatong Shi | Jinchuan Tian | William Chen | Shikhar Bharadwaj | Hayato Futami | Yosuke Kashiwagi | Emiru Tsunoo | Shuichiro Shimizu | Vaibhav Srivastav | Shinji Watanabe
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)

Advancements in audio foundation models (FMs) have fueled interest in end-to-end (E2E) spoken dialogue systems, but different web interfaces for each system makes it challenging to compare and contrast them effectively. Motivated by this, we introduce an open-source, user-friendly toolkit designed to build unified web interfaces for various cascaded and E2E spoken dialogue systems. Our demo further provides users with the option to get on-the-fly automated evaluation metrics such as (1) latency, (2) ability to understand user input, (3) coherence, diversity, and relevance of system response, and (4) intelligibility and audio quality of system output. Using the evaluation metrics, we compare various cascaded and E2E spoken dialogue systems with a human-human conversation dataset as a proxy. Our analysis demonstrates that the toolkit allows researchers to effortlessly compare and contrast different technologies, providing valuable insights such as current E2E systems having poorer audio quality and less diverse responses. An example demo produced using our toolkit is publicly available here: https://huggingface.co/spaces/Siddhant/Voice_Assistant_Demo.

2024

pdf bib
Make-A-Voice: Revisiting Voice Large Language Models as Scalable Multilingual and Multitask Learners
Rongjie Huang | Chunlei Zhang | Yongqi Wang | Dongchao Yang | Jinchuan Tian | Zhenhui Ye | Luping Liu | Zehan Wang | Ziyue Jiang | Xuankai Chang | Jiatong Shi | Chao Weng | Zhou Zhao | Dong Yu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have successfully served as a general-purpose interface across multiple tasks and languages, while the adaptation of voice LLMs is mostly designed for specific purposes (either single-task or monolingual), where the advantages of LLMs especially for low-resource language processing and zero-shot task generalization are less exploited in the audio community. To bridge the gap, we introduce Make-A-Voice as a multi-modal voice LLM and conduct a comprehensive study on its capability to deal with multiple tasks/languages. When trained on ~200K hours of 6-language data for 4 voice generation applications, Make-A-Voice emerges notable advantages: 1) as scalable learners to improve performance with end-to-end local and global multiscale transformers; and 2) as multitask learners by adjusting prompts to share common knowledge across modalities (speech/singing) and present in-context learning abilities by generalizing to unseen tasks not explicitly train on; 3) as multilingual learners to alleviate data scarcity of low-resource languages by including rich-resource language training data. Experimental results demonstrate that Make-A-Voice exhibits superior audio quality and style similarity compared with competitive baseline models in monolingual/cross-lingual voice generation. Audio samples are available at https://M-Voice.github.io

pdf bib
Towards Robust Speech Representation Learning for Thousands of Languages
William Chen | Wangyou Zhang | Yifan Peng | Xinjian Li | Jinchuan Tian | Jiatong Shi | Xuankai Chang | Soumi Maiti | Karen Livescu | Shinji Watanabe
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Self-supervised learning (SSL) has helped extend speech technologies to more languages by reducing the need for labeled data. However, models are still far from supporting the world’s 7000+ languages. We propose XEUS, a Cross-lingual Encoder for Universal Speech, trained on over 1 million hours of data across 4057 languages, extending the language coverage of SSL models 4-fold. We combine 1 million hours of speech from existing publicly accessible corpora with a newly created corpus of 7400+ hours from 4057 languages, which will be publicly released. To handle the diverse conditions of multilingual speech data, we augment the typical SSL masked prediction approach with a novel dereverberation objective, increasing robustness. We evaluate XEUS on several benchmarks, and show that it consistently outperforms or achieves comparable results to state-of-the-art (SOTA) SSL models across a variety of tasks. XEUS sets a new SOTA on the ML-SUPERB benchmark: it outperforms MMS 1B and w2v-BERT 2.0 v2 by 0.8% and 4.4% respectively, despite having less parameters or pre-training data. Checkpoints, code, and data are found in https://www.wavlab.org/activities/2024/xeus/.

pdf bib
CMU’s IWSLT 2024 Offline Speech Translation System: A Cascaded Approach For Long-Form Robustness
Brian Yan | Patrick Fernandes | Jinchuan Tian | Siqi Ouyang | William Chen | Karen Livescu | Lei Li | Graham Neubig | Shinji Watanabe
Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)

This work describes CMU’s submission to the IWSLT 2024 Offline Speech Translation (ST) Shared Task for translating English speech to German, Chinese, and Japanese text. We are the first participants to employ a long-form strategy which directly processes unsegmented recordings without the need for a separate voice-activity detection stage (VAD). We show that the Whisper automatic speech recognition (ASR) model has a hallucination problem when applied out-of-the-box to recordings containing non-speech noises, but a simple noisy fine-tuning approach can greatly enhance Whisper’s long-form robustness across multiple domains. Then, we feed English ASR outputs into fine-tuned NLLB machine translation (MT) models which are decoded using COMET-based Minimum Bayes Risk. Our VAD-free ASR+MT cascade is tested on TED talks, TV series, and workout videos and shown to outperform prior winning IWSLT submissions and large open-source models.

2023

pdf bib
The MineTrans Systems for IWSLT 2023 Offline Speech Translation and Speech-to-Speech Translation Tasks
Yichao Du | Guo Zhengsheng | Jinchuan Tian | Zhirui Zhang | Xing Wang | Jianwei Yu | Zhaopeng Tu | Tong Xu | Enhong Chen
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)

This paper presents the extscMineTrans English-to-Chinese speech translation systems developed for two challenge tracks of IWSLT 2023, i.e., Offline Speech Translation (S2T) and Speech-to-Speech Translation (S2ST). For the S2T track, extscMineTrans employs a practical cascaded system to explore the limits of translation performance in both constrained and unconstrained settings, where the whole system consists of automatic speech recognition (ASR), punctuation recognition (PC), and machine translation (MT) modules. We also investigate the effectiveness of multiple ASR architectures and explore two MT strategies: supervised in-domain fine-tuning and prompt-guided translation using a large language model. For the S2ST track, we explore a speech-to-unit (S2U) framework to build an end-to-end S2ST system. This system encodes the target speech as discrete units via our trained HuBERT. Then it leverages the standard sequence-to-sequence model to directly learn the mapping between source speech and discrete units without any auxiliary recognition tasks (i.e., ASR and MT tasks). Various efforts are made to improve the extscMineTrans’s performance, such as acoustic model pre-training on large-scale data, data filtering, data augmentation, speech segmentation, knowledge distillation, consistency training, model ensembles, etc.