Jie Ding


2025

pdf bib
AID: Adaptive Integration of Detectors for Safe AI with Language Models
Xinran Wang | Enmao Diao | Qi Le | Jie Ding | Ali Anwar
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

As Large Language Models (LLMs) increasingly influence content generation across diverse platforms, there is a heightened urgency to regulate their outputs to ensure safe usage. However, defining safety is complex, given that entities across domains may interpret it through varied lenses and develop safety detectors—models trained to identify specific unsafe content based on predefined criteria. To address this complexity, we introduce the approach of Adaptive Integration of Detectors (AID) to orchestrate the strengths of multiple pretrained detectors to ensure comprehensive effectiveness in diverse scenarios. AID employs a Mixture-of-Experts (MoE) framework, wherein it dynamically assigns and learns data-adaptive weights for each detector using domain-specific annotated data and LLM-extracted features. We provide theoretical insights into why MoE can be effective by showing its optimality in a Neyman-Pearson setting. Our experimental studies using various detection tasks curated from benchmark datasets demonstrate AID’s ability to synergistically combine the unique capabilities of individual detectors. For example, it is observed that AID can improve the area under the curve (AUC) by an absolute value of 0.07 to 0.21, with a median of 0.12, compared to the best individual detectors developed for specific safety aspects. The improvement is particularly significant for complex detection tasks that mix different unsafe data sources.

2022

pdf bib
ActPerFL: Active Personalized Federated Learning
Huili Chen | Jie Ding | Eric Tramel | Shuang Wu | Anit Kumar Sahu | Salman Avestimehr | Tao Zhang
Proceedings of the First Workshop on Federated Learning for Natural Language Processing (FL4NLP 2022)

In the context of personalized federated learning (FL), the critical challenge is to balance local model improvement and global model tuning when the personal and global objectives may not be exactly aligned. Inspired by Bayesian hierarchical models, we develop ActPerFL, a self-aware personalized FL method where each client can automatically balance the training of its local personal model and the global model that implicitly contributes to other clients’ training. Such a balance is derived from the inter-client and intra-client uncertainty quantification. Consequently, ActPerFL can adapt to the underlying clients’ heterogeneity with uncertainty-driven local training and model aggregation. With experimental studies on Sent140 and Amazon Alexa audio data, we show that ActPerFL can achieve superior personalization performance compared with the existing counterparts.