Jiayu Zhou


2025

pdf bib
Dynamic Uncertainty Ranking: Enhancing Retrieval-Augmented In-Context Learning for Long-Tail Knowledge in LLMs
Shuyang Yu | Runxue Bao | Parminder Bhatia | Taha Kass-Hout | Jiayu Zhou | Cao Xiao
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large language models (LLMs) can learn vast amounts of knowledge from diverse domains during pre-training. However, long-tail knowledge from specialized domains is often scarce and underrepresented, rarely appearing in the models’ memorization. Prior work has shown that in-context learning (ICL) with retriever augmentation can help LLMs better capture long-tail knowledge, reducing their reliance on pre-trained data. Despite these advances, we observe that LLM predictions for long-tail questions remain uncertain to variations in retrieved samples. To take advantage of the uncertainty in ICL for guiding LLM predictions toward correct answers on long-tail samples, we propose a reinforcement learning-based dynamic uncertainty ranking method for retrieval-augmented ICL that accounts for the varying impact of each retrieved sample on LLM predictions. Our approach prioritizes more informative and stable samples while demoting misleading ones, updating rankings based on the feedback from the LLM w.r.t. each retrieved sample. To enhance training efficiency and reduce query costs, we introduce a learnable dynamic ranking threshold, adjusted when the model encounters negative prediction shifts. Experimental results on various question-answering datasets from different domains show that our method outperforms the best baseline by 2.76%, with a notable 5.96% boost in accuracy on long-tail questions that elude zero-shot inference. Our code is available at https://github.com/Yu-shuyan/uncertian_ranker.

2022

pdf bib
Dynamic Augmentation Data Selection for Few-shot Text Classification
Guangliang Liu | Lifeng Jin | Owen Yuan | Jiayu Zhou
Findings of the Association for Computational Linguistics: EMNLP 2022

Data augmentation has been a popular method for fine-tuning pre-trained language models to increase model robustness and performance. With augmentation data coming from modifying gold train data (in-sample augmentation) or being harvested from general domain unlabeled data (out-of-sample augmentation), the quality of such data is the key to successful fine-tuning. In this paper, we propose a dynamic data selection method to select effective augmentation data from different augmentation sources according to the model’s learning stage, by identifying a set of augmentation samples that optimally facilitates the learning process of the most current model. The method firstly filters out augmentation samples with noisy pseudo labels through a curriculum learning strategy, then estimates the effectiveness of reserved augmentation data by its influence scores on the current model at every update, allowing the data selection process tightly tailored to model parameters. And the two-stage augmentation strategy considers in-sample augmentation and out-of-sample augmentation in different learning stages. Experiments with both kinds of augmentation data on a variety of sentence classification tasks show that our method outperforms strong baselines, proving the effectiveness of our method. Analysis confirms the dynamic nature of the data effectiveness and the importance of model learning stages in utilization of augmentation data.

2011

pdf bib
Using Inverse lambda and Generalization to Translate English to Formal Languages
Chitta Baral | Juraj Dzifcak | Marcos Alvarez Gonzalez | Jiayu Zhou
Proceedings of the Ninth International Conference on Computational Semantics (IWCS 2011)