James Z. Wang
2025
Evaluating Vision-Language Models for Emotion Recognition
Sree Bhattacharyya
|
James Z. Wang
Findings of the Association for Computational Linguistics: NAACL 2025
Large Vision-Language Models (VLMs) have achieved unprecedented success in several objective multimodal reasoning tasks. However, to further enhance their capabilities of empathetic and effective communication with humans, improving how VLMs process and understand emotions is crucial. Despite significant research attention on improving affective understanding, there is a lack of detailed evaluations of VLMs for emotion-related tasks, which can potentially help inform downstream fine-tuning efforts. In this work, we present the first comprehensive evaluation of VLMs for recognizing evoked emotions from images. We create a benchmark for the task of evoked emotion recognition and study the performance of VLMs for this task, from perspectives of correctness and robustness. Through several experiments, we demonstrate important factors that emotion recognition performance depends on, and also characterize the various errors made by VLMs in the process. Finally, we pinpoint potential causes for errors through a human evaluation study. We use our experimental results to inform recommendations for the future of emotion research in the context of VLMs.
2017
Determining Gains Acquired from Word Embedding Quantitatively Using Discrete Distribution Clustering
Jianbo Ye
|
Yanran Li
|
Zhaohui Wu
|
James Z. Wang
|
Wenjie Li
|
Jia Li
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Word embeddings have become widely-used in document analysis. While a large number of models for mapping words to vector spaces have been developed, it remains undetermined how much net gain can be achieved over traditional approaches based on bag-of-words. In this paper, we propose a new document clustering approach by combining any word embedding with a state-of-the-art algorithm for clustering empirical distributions. By using the Wasserstein distance between distributions, the word-to-word semantic relationship is taken into account in a principled way. The new clustering method is easy to use and consistently outperforms other methods on a variety of data sets. More importantly, the method provides an effective framework for determining when and how much word embeddings contribute to document analysis. Experimental results with multiple embedding models are reported.