Ivaxi Sheth
2025
CausalGraph2LLM: Evaluating LLMs for Causal Queries
Ivaxi Sheth
|
Bahare Fatemi
|
Mario Fritz
Findings of the Association for Computational Linguistics: NAACL 2025
Causality is essential in scientific research, enabling researchers to interpret true relationships between variables. These causal relationships are often represented by causal graphs, which are directed acyclic graphs. With the recent advancements in Large Language Models (LLMs), there is an increasing interest in exploring their capabilities in causal reasoning and their potential use to hypothesize causal graphs. These tasks necessitate the LLMs to encode the causal graph effectively for subsequent downstream tasks. In this paper, we introduce CausalGraph2LLM, a comprehensive benchmark comprising over 700k queries across diverse causal graph settings to evaluate the causal reasoning capabilities of LLMs. We categorize the causal queries into two types: graph-level and node-level queries. We benchmark both open-sourced and closed models for our study. Our findings reveal that while LLMs show promise in this domain, they are highly sensitive to the encoding used. Even capable models like GPT-4 and Gemini-1.5 exhibit sensitivity to encoding, with deviations of about 60%. We further demonstrate this sensitivity for downstream causal intervention tasks. Moreover, we observe that LLMs can often display biases when presented with contextual information about a causal graph, potentially stemming from their parametric memory.
2024
LLM Task Interference: An Initial Study on the Impact of Task-Switch in Conversational History
Akash Gupta
|
Ivaxi Sheth
|
Vyas Raina
|
Mark Gales
|
Mario Fritz
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
With the recent emergence of powerful instruction-tuned large language models (LLMs), various helpful conversational Artificial Intelligence (AI) systems have been deployed across many applications. When prompted by users, these AI systems successfully perform a wide range of tasks as part of a conversation. To provide some sort of memory and context, such approaches typically condition their output on the entire conversational history. Although this sensitivity to the conversational history can often lead to improved performance on subsequent tasks, we find that performance can in fact also be negatively impacted, if there is a _task-switch_. To the best of our knowledge, our work makes the first attempt to formalize the study of such vulnerabilities and interference of tasks in conversational LLMs caused by task-switches in the conversational history. Our experiments across 5 datasets with 15 task switches using popular LLMs reveal that many of the task-switches can lead to significant performance degradation.