Large language models (LLM) hold significant potential for applications in biomedicine, but they struggle with hallucinations and outdated knowledge.While retrieval-augmented generation (RAG) is generally employed to address these issues, it also has its own set of challenges: (1) LLMs are vulnerable to irrelevant or unhelpful context, (2) medical queries are often not well-targeted for helpful information, and (3) retrievers are prone to bias toward the specific source corpus they were trained on. In this study, we present RAG2 (RAtionale-Guided RAG), a new framework for enhancing the reliability of RAG in biomedical contexts. RAG2 incorporates three key innovations: a small filtering model trained on perplexity-based labels of rationales, which selectively augments informative snippets of documents while filtering out distractors; LLM-generated rationales as queries to improve the utility of retrieved snippets; a structure designed to retrieve snippets evenly from a comprehensive set of four biomedical corpora, effectively mitigating retriever bias. Our experiments demonstrate that RAG2 improves the state-of-the-art LLMs of varying sizes, with improvements of up to 6.1%, and it outperforms the previous best medical RAG model by up to 5.6% across three medical question-answering benchmarks. Our code is available at https://github.com/dmis-lab/RAG2
Recent advancements in large language models (LM) like OpenAI’s GPT-4 have shown promise in healthcare, particularly in medical question answering and clinical applications. However, their deployment raises privacy concerns and their size limits use in resource-constrained environments.Smaller open-source LMs have emerged as alternatives, but their reliability in medicine remains underexplored.This study evaluates small LMs in the medical field using the MEDIQA-CORR 2024 task, which assesses the ability of models to identify and correct errors in clinical notes. Initially, zero-shot inference and simple fine-tuning of small models resulted in poor performance. When fine-tuning with chain-of-thought (CoT) reasoning using synthetic data generated by GPT-4, their performance significantly improved. Meerkat-7B, a small LM trained with medical CoT reasoning, demonstrated notable performance gains. Our model outperforms other small non-commercial LMs and some larger models, achieving a 73.36 aggregate score on MEDIQA-CORR 2024.
Retrieval-augmented generation supports language models to strengthen their factual groundings by providing external contexts. However, language models often face challenges when given extensive information, diminishing their effectiveness in solving questions. Context compression tackles this issue by filtering out irrelevant information, but current methods still struggle in realistic scenarios where crucial information cannot be captured with a single-step approach. To overcome this limitation, we introduce CompAct, a novel framework that employs an active strategy to condense extensive documents without losing key information. Our experiments demonstrate that CompAct brings significant improvements in both performance and compression rate on multi-hop question-answering benchmarks. CompAct flexibly operates as a cost-efficient plug-in module with various off-the-shelf retrievers or readers, achieving exceptionally high compression rates (47x).