Hope McGovern


2025

pdf bib
Computational Discovery of Chiasmus in Ancient Religious Text
Hope McGovern | Hale Sirin | Tom Lippincott
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

Chiasmus, a debated literary device in Biblical texts, has captivated mystics while sparking ongoing scholarly discussion. In this paper, we introduce the first computational approach to systematically detect chiasmus within Biblical passages. Our method leverages neural embeddings to capture lexical and semantic patterns associated with chiasmus, applied at multiple levels of textual granularity (half-verses, verses). We also involve expert annotators to review a subset of the detected patterns. Despite its computational efficiency, our method achieves robust results, with high inter-annotator agreement and system accuracy of 0.80 at the verse level and 0.60 at the half-verse level. We further provide a qualitative analysis of the distribution of detected chiasmi, along with selected examples that highlight the effectiveness of our approach.

pdf bib
Characterizing the Effects of Translation on Intertextuality using Multilingual Embedding Spaces
Hope McGovern | Hale Sirin | Tom Lippincott
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

Rhetorical devices are difficult to translate, but they are crucial to the translation of literary documents. We investigate the use of multilingual embedding spaces to characterize the preservation of intertextuality, one common rhetorical device, across human and machine translation. To do so, we use Biblical texts, which are both full of intertextual references and are highly translated works. We provide a metric to characterize intertextuality at the corpus level and provide a quantitative analysis of the preservation of this rhetorical device across extant human translations and machine-generated counterparts. We go on to provide qualitative analysis of cases wherein human translations over- or underemphasize the intertextuality present in the text, whereas machine translations provide a neutral baseline. This provides support for established scholarship proposing that human translators have a propensity to amplify certain literary characteristics of the original manuscripts.

2024

pdf bib
Detecting Narrative Patterns in Biblical Hebrew and Greek
Hope McGovern | Hale Sirin | Tom Lippincott | Andrew Caines
Proceedings of the 1st Workshop on Machine Learning for Ancient Languages (ML4AL 2024)

We present a novel approach to extracting recurring narrative patterns, or type-scenes, in Biblical Hebrew and Biblical Greek with an information retrieval network. We use cross-references to train an encoder model to create similar representations for verses linked by a cross-reference. We then query our trained model with phrases informed by humanities scholarship and designed to elicit particular kinds of narrative scenes. Our models can surface relevant instances in the top-10 ranked candidates in many cases.Through manual error analysis and discussion, we address the limitations and challenges inherent in our approach. Our findings contribute to the field of Biblical scholarship by offering a new perspective on narrative analysis within ancient texts, and to computational modeling of narrative with a genre-agnostic approach for pattern-finding in long, literary texts.

2023

pdf bib
CLIMB – Curriculum Learning for Infant-inspired Model Building
Richard Diehl Martinez | Zébulon Goriely | Hope McGovern | Christopher Davis | Andrew Caines | Paula Buttery | Lisa Beinborn
Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning