Hao-Xiang Xu
2025
Constraining Sequential Model Editing with Editing Anchor Compression
Hao-Xiang Xu
|
Jun-Yu Ma
|
Zhen-Hua Ling
|
Ningyu Zhang
|
Jia-Chen Gu
Findings of the Association for Computational Linguistics: NAACL 2025
Large language models (LLMs) struggle with hallucinations due to false or outdated knowledge. Given the high resource demands of retraining these models, there is an increasing focus on developing model editing. However, the general abilities of LLMs across downstream tasks are prone to significant degradation during sequential editing. This paper statistically observes that the parameter matrix after editing exhibits a significant deviation compared to its previous state as the number of edits increases. This serious deviation affects the original knowledge associations within LLMs and leads to the degradation of their general abilities. To this end, a framework termed Editing Anchor Compression (EAC) is proposed to constrain the deviation of the parameter matrix during sequential editing. It compresses the editing information by selecting editing anchors that are important in encoding new relations without deviating too much from the original matrix, thereby preserving the general abilities. Experiments of applying EAC to two popular editing methods on three LLMs across four tasks are conducted. Evaluation results show that EAC effectively minimizes unreasonable deviations caused by model editing, preserving over 70% of the general abilities while better retaining the editing knowledge compared to the original counterpart methods.
2024
Model Editing Harms General Abilities of Large Language Models: Regularization to the Rescue
Jia-Chen Gu
|
Hao-Xiang Xu
|
Jun-Yu Ma
|
Pan Lu
|
Zhen-Hua Ling
|
Kai-Wei Chang
|
Nanyun Peng
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Model editing is a technique that edits the large language models (LLMs) with updated knowledge to alleviate hallucinations without resource-intensive retraining. While current model editing methods can effectively modify a model’s behavior within a specific area of interest, they often overlook the potential unintended side effects on the general abilities of LLMs such as reasoning, natural language inference, and question answering. In this paper, we raise concerns that model editing’s improvements on factuality may come at the cost of a significant degradation of the model’s general abilities. We systematically analyze the side effects by evaluating four popular editing methods on three LLMs across eight representative tasks. Our extensive empirical experiments show that it is challenging for current editing methods to simultaneously improve factuality of LLMs and maintain their general abilities. Our analysis reveals that the side effects are caused by model editing altering the original model weights excessively, leading to overfitting to the edited facts. To mitigate this, a method named RECT is proposed to regularize the edit update weights by imposing constraints on their complexity based on the RElative Change in weighT. Evaluation results show that RECT can significantly mitigate the side effects of editing while still maintaining over 94% editing performance.