HanGyeol Yoo


2025

pdf bib
Unified Automated Essay Scoring and Grammatical Error Correction
SeungWoo Song | Junghun Yuk | ChangSu Choi | HanGyeol Yoo | HyeonSeok Lim | KyungTae Lim | Jungyeul Park
Findings of the Association for Computational Linguistics: NAACL 2025

This study explores the integration of automated writing evaluation (AWE) and grammatical error correction (GEC) through multitask learning, demonstrating how combining these distinct tasks can enhance performance in both areas. By leveraging a shared learning framework, we show that models trained jointly on AWE and GEC outperform those trained on each task individually. To support this effort, we introduce a dataset specifically designed for multitask learning using AWE and GEC. Our experiments reveal significant synergies between tasks, leading to improvements in both writing assessment accuracy and error correction precision. This research represents a novel approach for optimizing language learning tools by unifying writing evaluation and correction tasks, offering insights into the potential of multitask learning in educational applications.

2024

pdf bib
X-LLaVA: Optimizing Bilingual Large Vision-Language Alignment
DongJae Shin | HyeonSeok Lim | Inho Won | ChangSu Choi | Minjun Kim | SeungWoo Song | HanGyeol Yoo | SangMin Kim | KyungTae Lim
Findings of the Association for Computational Linguistics: NAACL 2024

The impressive development of large language models (LLMs) is expanding into the realm of large multimodal models (LMMs), which incorporate multiple types of data beyond text. However, the nature of multimodal models leads to significant expenses in the creation of training data. Furthermore, constructing multilingual data for LMMs presents its own set of challenges due to language diversity and complexity. Therefore, in this study, we propose two cost-effective methods to solve this problem: (1) vocabulary expansion and pretraining of multilingual LLM for specific languages, and (2) automatic and elaborate construction of multimodal datasets using GPT4-V. Based on these methods, we constructed a 91K English-Korean-Chinese multilingual, multimodal training dataset. Additionally, we developed a bilingual multimodal model that exhibits excellent performance in both Korean and English, surpassing existing approaches.