Hanan Gani
2025
AgriCLIP: Adapting CLIP for Agriculture and Livestock via Domain-Specialized Cross-Model Alignment
Umair Nawaz
|
Awais Muhammad
|
Hanan Gani
|
Muzammal Naseer
|
Fahad Shahbaz Khan
|
Salman Khan
|
Rao Anwer
Proceedings of the 31st International Conference on Computational Linguistics
Capitalizing on a vast amount of image-text data, large-scale vision-language pre-training has demonstrated remarkable zero-shot capabilities and has been utilized in several applications. However, models trained on general everyday web-crawled data often exhibit sub-optimal performance for specialized domains, likely due to domain shift. Recent works have tackled this problem for some domains (e.g., healthcare) by constructing domain-specialized image-text data. However, constructing a dedicated large-scale image-text dataset for sustainable areas of agriculture and livestock is still open to research. Further, this domain desires fine-grained feature learning due to the subtle nature of the downstream tasks (e.g., nutrient deficiency detection and livestock breed classification). To address this, we present AgriCLIP, a vision-language foundational model dedicated to the domain of agriculture and livestock. First, we propose a large-scale dataset named ALive that leverages a customized prompt generation strategy to overcome the scarcity of expert annotations. Our ALive dataset covers crops, livestock, and fishery, with around 600,000 image-text pairs. Second, we propose a training pipeline that integrates both contrastive and self-supervised learning to learn both global semantic and local fine-grained domain-specialized features. Experiments on a diverse set of 20 downstream tasks demonstrate the effectiveness of the AgriCLIP framework, achieving an absolute gain of 9.07% in terms of average zero-shot classification accuracy over the standard CLIP adaptation via domain-specialized ALive dataset. Our ALive dataset and code can be accessible on Github.
VANE-Bench: Video Anomaly Evaluation Benchmark for Conversational LMMs
Hanan Gani
|
Rohit Bharadwaj
|
Muzammal Naseer
|
Fahad Shahbaz Khan
|
Salman Khan
Findings of the Association for Computational Linguistics: NAACL 2025
The recent advancements in Large Language Models (LLMs) have greatly influenced the development of Large Multi-modal Video Models (Video-LMMs), significantly enhancing our ability to interpret and analyze video data. Despite their impressive capabilities, current Video-LMMs have not been evaluated for anomaly detection tasks, which is critical to their deployment in practical scenarios e.g., towards identifying deepfakes, manipulated video content, traffic accidents and crimes. In this paper, we introduce VANE-Bench, a benchmark designed to assess the proficiency of Video-LMMs in detecting and localizing anomalies and inconsistencies in videos. Our dataset comprises an array of videos synthetically generated using existing state-of-the-art text-to-video generation models, encompassing a variety of subtle anomalies and inconsistencies grouped into five categories: unnatural transformations, unnatural appearance, pass-through, disappearance and sudden appearance. Additionally, our benchmark features real-world samples from existing anomaly detection datasets, focusing on crime-related irregularities, atypical pedestrian behavior, and unusual events. The task is structured as a visual question-answering challenge to gauge the models’ ability to accurately detect and localize the anomalies within the videos. We evaluate nine existing Video-LMMs, both open and closed sources, on this benchmarking task and find that most of the models encounter difficulties in effectively identifying the subtle anomalies. In conclusion, our research offers significant insights into the current capabilities of Video-LMMs in the realm of anomaly detection, highlighting the importance of our work in evaluating and improving these models for real-world applications. Our code and data is publicly available at https://github.com/rohit901/VANE-Bench.
Search
Fix data
Co-authors
- Fahad Shahbaz Khan 2
- Salman Khan 2
- Muzammal Naseer 2
- Rao Anwer 1
- Rohit Bharadwaj 1
- show all...