Hai Huang
2025
Overcoming both Domain Shift and Label Shift for Referring Video Segmentation
Hai Huang
|
Sashuai Zhou
|
Yan Xia
Findings of the Association for Computational Linguistics: NAACL 2025
Open-set domain generalization (OSDG) aims to enhance the robustness of the model when facing both domain shift and label shift, highlighting a wide range of potential in real-world applications. However, previous OSDG methods can only recognize seen objects and mark all unseen objects as “unknown” categories during inference, which is far from satisfactory. In this paper, we explore the scenario of referring video segmentation to study how to make the model maintain good segmentation ability for unknown objects under OSDG setting. To bridge the huge gap caused by label shift, we propose CLIP-based Reasoning Prompt (CRPrompt), which can combine text and visual prompts together to improve text-object matching ability of CLIP, transferring the segmentation ability to unseen classes based on the knowledge learned from seen classes and large-scale text-image pairs, i.e., color, shape, spatial relationships. Meanwhile, to improve the robustness of CRPrompt, we propose Retrieval-augmented Instance Normalization (RaIN), which can effectively enhance the robustness of the model by retrieving visual objects with similar semantic concepts through input query and performing Instance Norm among them. Extensive experiments on open-set and zero-shot domain generalization tasks demonstrate the effectiveness of our approach.
Omni-Chart-600K: A Comprehensive Dataset of Chart Types for Chart Understanding
Shulei Wang
|
Shuai Yang
|
Wang Lin
|
Zirun Guo
|
Sihang Cai
|
Hai Huang
|
Ye Wang
|
Jingyuan Chen
|
Tao Jin
Findings of the Association for Computational Linguistics: NAACL 2025
To address the deficiencies in chart types and the limited scope of chart tasks in existing datasets, we conducted a comprehensive review of current data collection methodologies. By integrating manual annotation with data generation leveraging GPT-4, we developed a dataset that includes 21 diverse chart types and a broad spectrum of tasks, such as data retrieval and mathematical reasoning. Our analysis of existing models revealed that capabilities in information extraction, mathematical reasoning, and understanding of multiple chart types are essential for performing a variety of chart tasks. To overcome the limitations in these areas, we devised a two-stage training strategy and a method for jointly training the vision encoder tailored for multi-type charts. In the first stage, we designed several tasks to enhance the model’s general understanding of charts, aligning multimodal large models pre-trained on natural images to chart tasks. To further improve the model’s capability to understand various chart tasks and enhance its reasoning abilities, we employed Chain-of-Thought data for training in the second stage. Through two-stage training on our proposed dataset, the pre-trained multimodal large language model achieved state-of-the-art performance across multiple chart understanding tasks, demonstrating the superiority of our data and methods.
2024
Composite Backdoor Attacks Against Large Language Models
Hai Huang
|
Zhengyu Zhao
|
Michael Backes
|
Yun Shen
|
Yang Zhang
Findings of the Association for Computational Linguistics: NAACL 2024
Large language models (LLMs) have demonstrated superior performance compared to previous methods on various tasks, and often serve as the foundation models for many researches and services. However, the untrustworthy third-party LLMs may covertly introduce vulnerabilities for downstream tasks. In this paper, we explore the vulnerability of LLMs through the lens of backdoor attacks. Different from existing backdoor attacks against LLMs, ours scatters multiple trigger keys in different prompt components. Such a Composite Backdoor Attack (CBA) is shown to be stealthier than implanting the same multiple trigger keys in only a single component. CBA ensures that the backdoor is activated only when all trigger keys appear. Our experiments demonstrate that CBA is effective in both natural language processing (NLP) and multimodal tasks. For instance, with 3% poisoning samples against the LLaMA-7B model on the Emotion dataset, our attack achieves a 100% Attack Success Rate (ASR) with a False Triggered Rate (FTR) below 2.06% and negligible model accuracy degradation. Our work highlights the necessity of increased security research on the trustworthiness of foundation LLMs.
Search
Fix data
Co-authors
- Michael Backes 1
- Sihang Cai 1
- Jingyuan Chen 1
- Zirun Guo 1
- Tao Jin 1
- show all...