Felicia Körner
Also published as: Felicia Koerner
2025
Add Noise, Tasks, or Layers? MaiNLP at the VarDial 2025 Shared Task on Norwegian Dialectal Slot and Intent Detection
Verena Blaschke
|
Felicia Körner
|
Barbara Plank
Proceedings of the 12th Workshop on NLP for Similar Languages, Varieties and Dialects
Slot and intent detection (SID) is a classic natural language understanding task. Despite this, research has only more recently begun focusing on SID for dialectal and colloquial varieties. Many approaches for low-resource scenarios have not yet been applied to dialectal SID data, or compared to each other on the same datasets. We participate in the VarDial 2025 shared task on slot and intent detection in Norwegian varieties, and compare multiple set-ups: varying the training data (English, Norwegian, or dialectal Norwegian), injecting character-level noise, training on auxiliary tasks, and applying Layer Swapping, a technique in which layers of models fine-tuned on different datasets are assembled into a model. We find noise injection to be beneficial while the effects of auxiliary tasks are mixed. Though some experimentation was required to successfully assemble a model from layers, it worked surprisingly well; a combination of models trained on English and small amounts of dialectal data produced the most robust slot predictions. Our best models achieve 97.6% intent accuracy and 85.6% slot F1 in the shared task.
2020
Dual Conditional Cross Entropy Scores and LASER Similarity Scores for the WMT20 Parallel Corpus Filtering Shared Task
Felicia Koerner
|
Philipp Koehn
Proceedings of the Fifth Conference on Machine Translation
This paper describes our submission to the WMT20 Parallel Corpus Filtering and Alignment for Low-Resource Conditions Shared Task. This year’s corpora are noisy Khmer-English and Pashto-English, with 58.3 million and 11.6 million words respectively (English token count). Our submission focuses on filtering Pashto-English, building on previously successful methods to produce two sets of scores: LASER_LM, a combination of the LASER similarity scores provided in the shared task and perplexity scores from language models, and DCCEF_DUP, dual conditional cross entropy scores combined with a duplication penalty. We improve slightly on the LASER similarity score and find that the provided clean data can successfully be supplemented with a subsampled set of the noisy data, effectively increasing the training data for the models used for dual conditional cross entropy scoring.