Federico Errica


2025

pdf bib
What Did I Do Wrong? Quantifying LLMs’ Sensitivity and Consistency to Prompt Engineering
Federico Errica | Davide Sanvito | Giuseppe Siracusano | Roberto Bifulco
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Language Models (LLMs) changed the way we design and interact with software systems. Their ability to process and extract information from text has drastically improved productivity in a number of routine tasks. Developers that want to include these models in their software stack, however, face a dreadful challenge: debugging LLMs’ inconsistent behavior across minor variations of the prompt. We therefore introduce two metrics for classification tasks, namely *sensitivity* and *consistency*, which are complementary to task performance. First, sensitivity measures changes of predictions across rephrasings of the prompt, and does not require access to ground truth labels. Instead, consistency measures how predictions vary across rephrasings for elements of the same class. We perform an empirical comparison of these metrics on text classification tasks, using them as guideline for understanding failure modes of the LLM. Our hope is that sensitivity and consistency will be helpful to guide prompt engineering and obtain LLMs that balance robustness with performance.

2017

pdf bib
FA3L at SemEval-2017 Task 3: A ThRee Embeddings Recurrent Neural Network for Question Answering
Giuseppe Attardi | Antonio Carta | Federico Errica | Andrea Madotto | Ludovica Pannitto
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

In this paper we present ThReeNN, a model for Community Question Answering, Task 3, of SemEval-2017. The proposed model exploits both syntactic and semantic information to build a single and meaningful embedding space. Using a dependency parser in combination with word embeddings, the model creates sequences of inputs for a Recurrent Neural Network, which are then used for the ranking purposes of the Task. The score obtained on the official test data shows promising results.