Du Su
2025
PRDetect: Perturbation-Robust LLM-generated Text Detection Based on Syntax Tree
Xiang Li
|
Zhiyi Yin
|
Hexiang Tan
|
Shaoling Jing
|
Du Su
|
Yi Cheng
|
Huawei Shen
|
Fei Sun
Findings of the Association for Computational Linguistics: NAACL 2025
As LLM-generated text becomes increasingly prevalent on the internet, often containing hallucinations or biases, detecting such content has emerged as a critical area of research.Recent methods have demonstrated impressive performance in detecting text generated entirely by LLMs.However, in real-world scenarios, users often introduce perturbations to the LLM-generated text, and the robustness of existing detection methods against these perturbations has not been sufficiently explored.This paper empirically investigates this challenge and finds that even minor perturbations can severely degrade the performance of current detection methods. To address this issue, we find that the syntactic tree is minimally affected by disturbances and exhibits distinct differences between human-written and LLM-generated text.Therefore, we propose a detection method based on syntactic trees, which can capture features invariant to perturbations.It demonstrates significantly improved robustness against perturbation on the HC3 and GPT-3.5-mixed datasets.Moreover, it also has the shortest time expenditure.We provide the code and data at https://github.com/thulx18/PRDetect.
2024
The Fall of ROME: Understanding the Collapse of LLMs in Model Editing
Wanli Yang
|
Fei Sun
|
Jiajun Tan
|
Xinyu Ma
|
Du Su
|
Dawei Yin
|
Huawei Shen
Findings of the Association for Computational Linguistics: EMNLP 2024
Despite significant progress in model editing methods, their application in real-world scenarios remains challenging as they often cause large language models (LLMs) to collapse. Among them, ROME is particularly concerning, as it could disrupt LLMs with only a single edit. In this paper, we study the root causes of such collapse. Through extensive analysis, we identify two primary factors that contribute to the collapse: i) inconsistent handling of prefixed and unprefixed keys in the parameter update equation may result in very small denominators, causing excessively large parameter updates; ii) the subject of collapse cases is usually the first token, whose unprefixed key distribution significantly differs from the prefixed key distribution in autoregressive transformers, causing the aforementioned issue to materialize. To validate our findings, we propose a simple yet effective approach: uniformly using prefixed keys during editing phase and adding prefixes during testing phase to ensure the consistency between training and testing. The experimental results show that the proposed solution can prevent model collapse while maintaining the effectiveness of the edits.
Search
Fix data
Co-authors
- Huawei Shen 2
- Fei Sun 2
- Yi Cheng 1
- Shaoling Jing 1
- Xiang Li (李翔) 1
- show all...