Dror Ben-Zeev

Also published as: Dror Ben-zeev


2025

pdf bib
Bigger But Not Better: Small Neural Language Models Outperform LLMs in Detection of Thought Disorder
Changye Li | Weizhe Xu | Serguei Pakhomov | Ellen Bradley | Dror Ben-Zeev | Trevor Cohen
Proceedings of the 10th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2025)

Disorganized thinking is a key diagnostic indicator of schizophrenia-spectrum disorders. Recently, clinical estimates of the severity of disorganized thinking have been shown to correlate with measures of how difficult speech transcripts would be for large language models (LLMs) to predict. However, LLMs’ deployment challenges – including privacy concerns, computational and financial costs, and lack of transparency of training data – limit their clinical utility. We investigate whether smaller neural language models can serve as effective alternatives for detecting positive formal thought disorder, using the same sliding window based perplexity measurements that proved effective with larger models. Surprisingly, our results show that smaller models are more sensitive to linguistic differences associated with formal thought disorder than their larger counterparts. Detection capability declines beyond a certain model size and context length, challenging the common assumption of “bigger is better” for LLM-based applications. Our findings generalize across audio diaries and clinical interview speech samples from individuals with psychotic symptoms, suggesting a promising direction for developing efficient, cost-effective, and privacy-preserving screening tools that can be deployed in both clinical and naturalistic settings.

2022

pdf bib
Identifying Distorted Thinking in Patient-Therapist Text Message Exchanges by Leveraging Dynamic Multi-Turn Context
Kevin Lybarger | Justin Tauscher | Xiruo Ding | Dror Ben-zeev | Trevor Cohen
Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology

There is growing evidence that mobile text message exchanges between patients and therapists can augment traditional cognitive behavioral therapy. The automatic characterization of patient thinking patterns in this asynchronous text communication may guide treatment and assist in therapist training. In this work, we automatically identify distorted thinking in text-based patient-therapist exchanges, investigating the role of conversation history (context) in distortion prediction. We identify six unique types of cognitive distortions and utilize BERT-based architectures to represent text messages within the context of the conversation. We propose two approaches for leveraging dynamic conversation context in model training. By representing the text messages within the context of the broader patient-therapist conversation, the models better emulate the therapist’s task of recognizing distorted thoughts. This multi-turn classification approach also leverages the clustering of distorted thinking in the conversation timeline. We demonstrate that including conversation context, including the proposed dynamic context methods, improves distortion prediction performance. The proposed architectures and conversation encoding approaches achieve performance comparable to inter-rater agreement. The presence of any distorted thinking is identified with relatively high performance at 0.73 F1, significantly outperforming the best context-agnostic models (0.68 F1).