Dixuan Wang


2025

pdf bib
Benchmarking Language Model Creativity: A Case Study on Code Generation
Yining Lu | Dixuan Wang | Tianjian Li | Dongwei Jiang | Sanjeev Khudanpur | Meng Jiang | Daniel Khashabi
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

As LLMs become increasingly prevalent, it is interesting to consider how “creative” these models can be. From cognitive science, creativity consists of at least two key characteristics: convergent thinking (purposefulness to achieve a given goal) and divergent thinking (adaptability to explore new environments or constraints) (CITATION). In this work, we introduce a framework for quantifying LLM creativity that incorporates the two design ingredients: (1) We introduce DENIAL PROMPTING which pushes LLMs to develop more creative solutions to a given problem by incrementally imposing new constraints on the previous solution, compelling LLMs to adopt new strategies. (2) We define NEOGAUGE, a metric that quantifies both convergent and divergent thinking in the generated creative responses by LLMs. We test the proposed framework on Codeforces problems, which serve as both a natural dataset for coding tasks and a collection of prior human solutions. We quantify NEOGAUGE for various proprietary and open-source models and find that even the most creative model, GPT-4, still falls short of demonstrating human-like creativity. We also experiment with advanced reasoning strategies (MCTS, self-correction, etc.) and observe no significant improvement in creativity. As a by-product of our analysis, we release NEOCODER dataset for reproducing our results on future models.

2024

pdf bib
Reason from Fallacy: Enhancing Large Language Models’ Logical Reasoning through Logical Fallacy Understanding
Yanda Li | Dixuan Wang | Jiaqing Liang | Guochao Jiang | Qianyu He | Yanghua Xiao | Deqing Yang
Findings of the Association for Computational Linguistics: NAACL 2024

Large Language Models (LLMs) have demonstrated good performance in many reasoning tasks, but they still struggle with some complicated reasoning tasks including logical reasoning. One non-negligible reason for LLMs’ suboptimal performance on logical reasoning is their overlooking of understanding logical fallacies correctly. To evaluate LLMs’ capability of logical fallacy understanding (LFU), we propose five concrete tasks from three cognitive dimensions of WHAT, WHY, and HOW in this paper. Towards these LFU tasks, we have successfully constructed a new dataset LFUD based on GPT-4 accompanied by a little human effort. Our extensive experiments justify that our LFUD can be used not only to evaluate LLMs’ LFU capability, but also to fine-tune LLMs to obtain significantly enhanced performance on logical reasoning.

pdf bib
ToNER: Type-oriented Named Entity Recognition with Generative Language Model
Guochao Jiang | Ziqin Luo | Yuchen Shi | Dixuan Wang | Jiaqing Liang | Deqing Yang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

In recent years, the fine-tuned generative models have been proven more powerful than the previous tagging-based or span-based models on named entity recognition (NER) task. It has also been found that the information related to entities, such as entity types, can prompt a model to achieve NER better. However, it is not easy to determine the entity types indeed existing in the given sentence in advance, and inputting too many potential entity types would distract the model inevitably. To exploit entity types’ merit on promoting NER task, in this paper we propose a novel NER framework, namely ToNER based on a generative model. In ToNER, a type matching model is proposed at first to identify the entity types most likely to appear in the sentence. Then, we append a multiple binary classification task to fine-tune the generative model’s encoder, so as to generate the refined representation of the input sentence. Moreover, we add an auxiliary task for the model to discover the entity types which further fine-tunes the model to output more accurate results. Our extensive experiments on some NER benchmarks verify the effectiveness of our proposed strategies in ToNER that are oriented towards entity types’ exploitation.