Dipanwita Guhathakurta


2025

pdf bib
How Inclusively do LMs Perceive Social and Moral Norms?
Michael Galarnyk | Agam Shah | Dipanwita Guhathakurta | Poojitha Nandigam | Sudheer Chava
Findings of the Association for Computational Linguistics: NAACL 2025

**This paper discusses and contains offensive content.** Language models (LMs) are used in decision-making systems and as interactive assistants. However, how well do these models making judgements align with the diversity of human values, particularly regarding social and moral norms? In this work, we investigate how inclusively LMs perceive norms across demographic groups (e.g., gender, age, and income). We prompt 11 LMs on rules-of-thumb (RoTs) and compare their outputs with the existing responses of 100 human annotators. We introduce the Absolute Distance Alignment Metric (ADA-Met) to quantify alignment on ordinal questions. We find notable disparities in LM responses, with younger, higher-income groups showing closer alignment, raising concerns about the representation of marginalized perspectives. Our findings highlight the importance of further efforts to make LMs more inclusive of diverse human values. The code and prompts are available on GitHub under the CC BY-NC 4.0 license.

2022

pdf bib
Tweet Based Reach Aware Temporal Attention Network for NFT Valuation
Ramit Sawhney | Megh Thakkar | Ritesh Soun | Atula Neerkaje | Vasu Sharma | Dipanwita Guhathakurta | Sudheer Chava
Findings of the Association for Computational Linguistics: EMNLP 2022

Non-Fungible Tokens (NFTs) are a relatively unexplored class of assets. Designing strategies to forecast NFT trends is an intricate task due to its extremely volatile nature. The market is largely driven by public sentiment and “hype”, which in turn has a high correlation with conversations taking place on social media platforms like Twitter. Prior work done for modelling stock market data does not take into account the extent of impact certain highly influential tweets and their authors can have on the market. Building on these limitations and the nature of the NFT market, we propose a novel reach-aware temporal learning approach to make predictions for forecasting future trends in the NFT market. We perform experiments on a new dataset consisting of over 1.3 million tweets and 180 thousand NFT transactions spanning over 15 NFT collections curated by us. Our model (TA-NFT) outperforms other state-of-the-art methods by an average of 36%. Through extensive quantitative and ablative analysis, we demonstrate the ability of our approach as a practical method for predicting NFT trends.