David Jiménez-Cabello

Also published as: David Jimenez-Cabello


2025

pdf bib
Prototypical Extreme Multi-label Classification with a Dynamic Margin Loss
Kunal Dahiya | Diego Ortego | David Jimenez-Cabello
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Extreme Multi-label Classification (XMC) methods predict relevant labels for a given query in an extremely large label space. Recent works in XMC address this problem using deep encoders that project text descriptions to an embedding space suitable for recovering the closest labels. However, learning deep models can be computationally expensive in large output spaces, resulting in a trade-off between high performing brute-force approaches and efficient solutions. In this paper, we propose PRIME, a XMC method that employs a novel prototypical contrastive learning technique to reconcile efficiency and performance surpassing brute-force approaches. We frame XMC as a data-to-prototype prediction task where label prototypes aggregate information from related queries. More precisely, we use a shallow transformer encoder that we coin as Label Prototype Network, which enriches label representations by aggregating text-based embeddings, label centroids and learnable free vectors. We jointly train a deep encoder and the Label Prototype Network using an adaptive triplet loss objective that better adapts to the high granularity and ambiguity of extreme label spaces. PRIME achieves state-of-the-art results in several public benchmarks of different sizes and domains, while keeping the model efficient.

2020

pdf bib
Multi-label classification of promotions in digital leaflets using textual and visual information
Roberto Arroyo | David Jiménez-Cabello | Javier Martínez-Cebrián
Proceedings of Workshop on Natural Language Processing in E-Commerce

Product descriptions in e-commerce platforms contain detailed and valuable information about retailers assortment. In particular, coding promotions within digital leaflets are of great interest in e-commerce as they capture the attention of consumers by showing regular promotions for different products. However, this information is embedded into images, making it difficult to extract and process for downstream tasks. In this paper, we present an end-to-end approach that classifies promotions within digital leaflets into their corresponding product categories using both visual and textual information. Our approach can be divided into three key components: 1) region detection, 2) text recognition and 3) text classification. In many cases, a single promotion refers to multiple product categories, so we introduce a multi-label objective in the classification head. We demonstrate the effectiveness of our approach for two separated tasks: 1) image-based detection of the descriptions for each individual promotion and 2) multi-label classification of the product categories using the text from the product descriptions. We train and evaluate our models using a private dataset composed of images from digital leaflets obtained by Nielsen. Results show that we consistently outperform the proposed baseline by a large margin in all the experiments.