Chung-Wei Hang


2025

pdf bib
PRACTIQ: A Practical Conversational Text-to-SQL dataset with Ambiguous and Unanswerable Queries
Mingwen Dong | Nischal Ashok Kumar | Yiqun Hu | Anuj Chauhan | Chung-Wei Hang | Shuaichen Chang | Lin Pan | Wuwei Lan | Henghui Zhu | Jiarong Jiang | Patrick Ng | Zhiguo Wang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Previous text-to-SQL datasets and systems have primarily focused on user questions with clear intentions that can be answered. However, real user questions can often be ambiguous with multiple interpretations or unanswerable due to a lack of relevant data. In this work, we construct a practical conversational text-to-SQL dataset called PRACTIQ, consisting of ambiguous and unanswerable questions inspired by real-world user questions. We first identified four categories of ambiguous questions and four categories of unanswerable questions by studying existing text-to-SQL datasets. Then, we generate conversations with four turns: the initial user question, an assistant response seeking clarification, the user’s clarification, and the assistant’s clarified SQL response with the natural language explanation of the execution results. For some ambiguous queries, we also directly generate helpful SQL responses, that consider multiple aspects of ambiguity, instead of requesting user clarification. To benchmark the performance on ambiguous, unanswerable, and answerable questions, we implemented large language model (LLM)-based baselines using various LLMs. Our approach involves two steps: question category classification and clarification SQL prediction. Our experiments reveal that state-of-the-art systems struggle to handle ambiguous and unanswerable questions effectively. We release our code for data generation and experiments on GitHub.

2023

pdf bib
Importance of Synthesizing High-quality Data for Text-to-SQL Parsing
Yiqun Hu | Yiyun Zhao | Jiarong Jiang | Wuwei Lan | Henghui Zhu | Anuj Chauhan | Alexander Hanbo Li | Lin Pan | Jun Wang | Chung-Wei Hang | Sheng Zhang | Jiang Guo | Mingwen Dong | Joseph Lilien | Patrick Ng | Zhiguo Wang | Vittorio Castelli | Bing Xiang
Findings of the Association for Computational Linguistics: ACL 2023

There has been increasing interest in synthesizing data to improve downstream text-to-SQL tasks. In this paper, we examined the existing synthesized datasets and discovered that state-of-the-art text-to-SQL algorithms did not further improve on popular benchmarks when trained with augmented synthetic data. We observed three shortcomings: illogical synthetic SQL queries from independent column sampling, arbitrary table joins, and language gaps between the synthesized SQL and natural language question (NLQ) pair. To address these issues, we propose a novel synthesis framework that imposes strong typing constraints, incorporates key relationships from schema, and conducts schema-distance-weighted column sampling. We also adopt an intermediate representation (IR) for the SQL-to-text task to further improve the quality of the generated NLQ. When existing powerful text-to-SQL parsers are pretrained on our high-quality synthesized data, these models have significant accuracy boosts and achieve new state-of-the-art performance on Spider. We also demonstrate the effectiveness of our techniques with ablation studies

pdf bib
Benchmarking Diverse-Modal Entity Linking with Generative Models
Sijia Wang | Alexander Hanbo Li | Henghui Zhu | Sheng Zhang | Pramuditha Perera | Chung-Wei Hang | Jie Ma | William Yang Wang | Zhiguo Wang | Vittorio Castelli | Bing Xiang | Patrick Ng
Findings of the Association for Computational Linguistics: ACL 2023

Entities can be expressed in diverse formats, such as texts, images, or column names and cell values in tables. While existing entity linking (EL) models work well on per modality configuration, such as text-only EL, visual grounding or schema linking, it is more challenging to design a unified model for diverse modality configurations. To bring various modality configurations together, we constructed a benchmark for diverse-modal EL (DMEL) from existing EL datasets, covering all three modalities including text, image and table. To approach the DMEL task, we proposed a generative diverse-modal model (GDMM) following a multimodal-encoder-decoder paradigm. Pre-training GDMM with rich corpora builds a solid foundation for DMEL without storing the entire KB for inference. Fine-tuning GDMM builds a stronger DMEL baseline, outperforming state-of-the-art task-specific EL models by 8.51 F1 score on average. Additionally, extensive error analyses are conducted to highlight the challenge of DMEL, facilitating future researches on this task.

2021

pdf bib
Multilingual BERT Post-Pretraining Alignment
Lin Pan | Chung-Wei Hang | Haode Qi | Abhishek Shah | Saloni Potdar | Mo Yu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose a simple method to align multilingual contextual embeddings as a post-pretraining step for improved cross-lingual transferability of the pretrained language models. Using parallel data, our method aligns embeddings on the word level through the recently proposed Translation Language Modeling objective as well as on the sentence level via contrastive learning and random input shuffling. We also perform sentence-level code-switching with English when finetuning on downstream tasks. On XNLI, our best model (initialized from mBERT) improves over mBERT by 4.7% in the zero-shot setting and achieves comparable result to XLM for translate-train while using less than 18% of the same parallel data and 31% fewer model parameters. On MLQA, our model outperforms XLM-R_Base, which has 57% more parameters than ours.

2020

pdf bib
Octa: Omissions and Conflicts in Target-Aspect Sentiment Analysis
Zhe Zhang | Chung-Wei Hang | Munindar Singh
Findings of the Association for Computational Linguistics: EMNLP 2020

Sentiments in opinionated text are often determined by both aspects and target words (or targets). We observe that targets and aspects interrelate in subtle ways, often yielding conflicting sentiments. Thus, a naive aggregation of sentiments from aspects and targets treated separately, as in existing sentiment analysis models, impairs performance. We propose Octa, an approach that jointly considers aspects and targets when inferring sentiments. To capture and quantify relationships between targets and context words, Octa uses a selective self-attention mechanism that handles implicit or missing targets. Specifically, Octa involves two layers of attention mechanisms for, respectively, selective attention between targets and context words and attention over words based on aspects. On benchmark datasets, Octa outperforms leading models by a large margin, yielding (absolute) gains in accuracy of 1.6% to 4.3%.