Chun-Yi Kuan
2025
Gender Bias in Instruction-Guided Speech Synthesis Models
Chun-Yi Kuan
|
Hung-yi Lee
Findings of the Association for Computational Linguistics: NAACL 2025
Recent advancements in controllable expressive speech synthesis, especially in text-to-speech (TTS) models, have allowed for the generation of speech with specific styles guided by textual descriptions, known as style prompts. While this development enhances the flexibility and naturalness of synthesized speech, there remains a significant gap in understanding how these models handle vague or abstract style prompts. This study investigates the potential gender bias in how models interpret occupation-related prompts, specifically examining their responses to instructions like “Act like a nurse”. We explore whether these models exhibit tendencies to amplify gender stereotypes when interpreting such prompts. Our experimental results reveal the model’s tendency to exhibit gender bias for certain occupations. Moreover, models of different sizes show varying degrees of this bias across these occupations.
2024
Large Language Model as an Assignment Evaluator: Insights, Feedback, and Challenges in a 1000+ Student Course
Cheng-Han Chiang
|
Wei-Chih Chen
|
Chun-Yi Kuan
|
Chienchou Yang
|
Hung-yi Lee
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Using large language models (LLMs) for automatic evaluation has become an important evaluation method in NLP research. However, it is unclear whether these LLM-based evaluators can be effectively applied in real-world classrooms to assess student assignments. This empirical report shares how we use GPT-4 as an automatic assignment evaluator in a university course with over 1000 students. Based on student responses, we found that LLM-based assignment evaluators are generally acceptable to students when they have free access to these tools. However, students also noted that the LLM sometimes fails to adhere to the evaluation instructions, resulting in unreasonable assessments. Additionally, we observed that students can easily manipulate the LLM to output specific strings, allowing them to achieve high scores without meeting the assignment rubric. Based on student feedback and our experience, we offer several recommendations for effectively integrating LLMs into future classroom evaluations. Our observation also highlights potential directions for improving LLM-based evaluators, including their instruction-following ability and vulnerability to prompt hacking.