Chia-Yu Hung


2025

pdf bib
Reward-Guided Tree Search for Inference Time Alignment of Large Language Models
Chia-Yu Hung | Navonil Majumder | Ambuj Mehrish | Soujanya Poria
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Inference-time computation methods enhance the performance of Large Language Models (LLMs) by leveraging additional computational resources to achieve superior results. Common techniques, such as Best-of-N sampling, Majority Voting, and variants of tree-search algorithm have proven to be effective in boosting the performance of LLMs. These approaches strategically trade increased computational resource for improved model responses. In this work, we proposed DARWIN, an inference-time alignment method that leverage the guidance of a reward model to achieve alignment through reward-guided tree search. Empirical evidences indicates that our method outperform other inference-time alignment methods such as Best-of-N and ARGS on two widely accepted alignment benchmarks AlpacaEval 2 and MT-Bench. Furthermore, we show that our inference-time approach achieves performance comparable to preference-tuned models on both benchmarks, highlighting the effectiveness of trading inference-time compute for enhanced performance during inference.

2023

pdf bib
Who Wrote it and Why? Prompting Large-Language Models for Authorship Verification
Chia-Yu Hung | Zhiqiang Hu | Yujia Hu | Roy Lee
Findings of the Association for Computational Linguistics: EMNLP 2023

Authorship verification (AV) is a fundamental task in natural language processing (NLP) and computational linguistics, with applications in forensic analysis, plagiarism detection, and identification of deceptive content. Existing AV techniques, including traditional stylometric and deep learning approaches, face limitations in terms of data requirements and lack of explainability. To address these limitations, this paper proposes PromptAV, a novel technique that leverages Large-Language Models (LLMs) for AV by providing step-by-step stylometric explanation prompts. PromptAV outperforms state-of-the-art baselines, operates effectively with limited training data, and enhances interpretability through intuitive explanations, showcasing its potential as an effective and interpretable solution for the AV task.