Chenghao Zhu


2025

pdf bib
MLLM-Bench: Evaluating Multimodal LLMs with Per-sample Criteria
Wentao Ge | Shunian Chen | Hardy Chen | Nuo Chen | Junying Chen | Zhihong Chen | Wenya Xie | Shuo Yan | Chenghao Zhu | Ziyue Lin | Dingjie Song | Xidong Wang | Anningzhe Gao | Zhang Zhiyi | Jianquan Li | Xiang Wan | Benyou Wang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Multimodal large language models (MLLMs) have broadened the scope of AI applications. Existing automatic evaluation methodologies for MLLMs are mainly limited in evaluating objective queries without considering real-world user experiences, inadequately addressing the nuances of creative and associative multimodal tasks. However, the open-ended and subjective nature of such tasks poses a significant challenge to the evaluation methodology, where it is difficult to define the ground-truth answers for them. To this end, in our paper, we propose a new evaluation paradigm for MLLMs, which is evaluating MLLMs with per-sample criteria using potent MLLM as the judge. To validate the feasibility and effectiveness of this paradigm, we design a benchmark, dubbed MLLM-Bench, by curating the evaluation samples across six comprehensive cognitive levels. We benchmark 26 popular MLLMs in a pairwise-comparison fashion, showing diverse performance across models. Moreover, the validity of our benchmark manifests itself in reaching 88.02% agreement with human evaluation. We contend that the proposed paradigm explores the potential of MLLMs as effective evaluation tools with the help of per-sample criteria.

pdf bib
Is Your LLM Outdated? A Deep Look at Temporal Generalization
Chenghao Zhu | Nuo Chen | Yufei Gao | Yunyi Zhang | Prayag Tiwari | Benyou Wang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

The rapid advancement of Large Language Models (LLMs) has led to the development of benchmarks that consider temporal dynamics, however, there remains a gap in understanding how well these models can generalize across temporal contexts due to the inherent dynamic nature of language and information. This paper introduces the concept of temporal generalization in LLMs, including bias in past and future generalizations. Then we introduce FreshBench, a new evaluation framework that employs fresh text and event prediction for assessing LLMs’ temporal adaptability, ensuring the evaluation process free from data leakage and subjective bias. The experiment shows significant temporal biases and a decline in performance over time.