Chenghao Wang


2025

pdf bib
Elevating Legal LLM Responses: Harnessing Trainable Logical Structures and Semantic Knowledge with Legal Reasoning
Rujing Yao | Yang Wu | Chenghao Wang | Jingwei Xiong | Fang Wang | Xiaozhong Liu
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Language Models (LLMs) have achieved impressive results across numerous domains, yet they experience notable deficiencies in legal question-answering tasks. LLMs often generate generalized responses that lack the logical specificity required for expert legal advice and are prone to hallucination, providing answers that appear correct but are unreliable. Retrieval-Augmented Generation (RAG) techniques offer partial solutions to address this challenge, but existing approaches typically focus only on semantic similarity, neglecting the logical structure essential to legal reasoning. In this paper, we propose the Logical-Semantic Integration Model (LSIM), a novel supervised framework that bridges semantic and logical coherence. LSIM comprises three components: reinforcement learning predicts a structured fact-rule chain for each question, a trainable Deep Structured Semantic Model (DSSM) retrieves the most relevant candidate questions by integrating semantic and logical features, and in-context learning generates the final answer using the retrieved content. Our experiments on a real-world legal QA dataset-validated through both automated metrics and human evaluation-demonstrate that LSIM significantly enhances accuracy and reliability compared to existing methods.

2024

pdf bib
Knowledge-Infused Legal Wisdom: Navigating LLM Consultation through the Lens of Diagnostics and Positive-Unlabeled Reinforcement Learning
Yang Wu | Chenghao Wang | Ece Gumusel | Xiaozhong Liu
Findings of the Association for Computational Linguistics: ACL 2024

The integration of generative Large Language Models (LLMs) into various applications, including the legal domain, has been accelerated by their expansive and versatile nature. However, when facing a legal case, users without a legal background often struggle to formulate professional queries and may inadvertently overlook critical legal factors when presenting their case narrative to LLMs. To address this issue, we propose the Diagnostic Legal Large Language Model (D3LM), which utilizes adaptive lawyer-like diagnostic questions to collect additional case information and then provides high-quality feedback. D3LM incorporates an innovative graph-based Positive-Unlabeled Reinforcement Learning (PURL) algorithm, enabling the generation of critical questions and enhancing user-LLM interactions. Moreover, an integrated LLM-based stopping criterion facilitates precise Court Views Generation (CVG). Our research also introduces a new English-language CVG dataset based on the US case law database, enriching the realm of LLM research and deployment with a vital dimension. D3LM surpasses classical LLMs by delivering outstanding performance and a remarkable user experience in the legal domain.