Cheng-Ping Hsieh
2025
How much do contextualized representations encode long-range context?
Simeng Sun
|
Cheng-Ping Hsieh
Findings of the Association for Computational Linguistics: NAACL 2025
We analyze contextual representations in neural autoregressive language models, emphasizing long-range contexts that span several thousand tokens. Our methodology employs a perturbation setup and the metric Anisotropy-Calibrated Cosine Similarity, to capture the degree of contextualization of long-range patterns from the perspective of representation geometry. We begin the analysis with a case study on standard decoder-only Transformers, demonstrating that similar perplexity can exhibit markedly different downstream task performance, which can be explained by the difference in contextualization of long-range content. Next, we extend the analysis to other models, covering recent novel architectural designs and various training configurations. The representation-level results illustrate a reduced capacity for high-complexity (i.e., less compressible) sequences across architectures, and that fully recurrent models rely heavily on local context, whereas hybrid models more effectively encode the entire sequence structure. Finally, preliminary analysis of model size and training configurations on the encoding of long-range context suggest potential directions for improving existing language models.
2022
RLPrompt: Optimizing Discrete Text Prompts with Reinforcement Learning
Mingkai Deng
|
Jianyu Wang
|
Cheng-Ping Hsieh
|
Yihan Wang
|
Han Guo
|
Tianmin Shu
|
Meng Song
|
Eric Xing
|
Zhiting Hu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Prompting has shown impressive success in enabling large pre-trained language models (LMs) to perform diverse NLP tasks, especially with only few downstream data. Automatically finding the optimal prompt for each task, however, is challenging. Most existing work resorts to tuning *soft* prompts (e.g., embeddings) which fall short of interpretability, reusability across LMs, and applicability when gradients are not accessible. *Discrete* prompts, on the other hand, are difficult to optimize, and are often created by “enumeration (e.g., paraphrasing)-then-selection” heuristics that do not explore the prompt space systematically. This paper proposes RLPrompt, an efficient discrete prompt optimization approach with reinforcement learning (RL). RLPrompt formulates a parameter-efficient policy network that generates the optimized discrete prompt after training with reward. To harness the complex and stochastic reward signals from the large LM environment, we incorporate effective reward stabilization that substantially enhances training efficiency. RLPrompt is flexibly applicable to different types of LMs, such as masked (e.g., BERT) and left-to-right models (e.g., GPTs), for both classification and generation tasks. Experiments on few-shot classification and unsupervised text style transfer show superior performance over a wide range of existing fine-tuning or prompting methods. Interestingly, the resulting optimized prompts are often ungrammatical gibberish text; and surprisingly, those gibberish prompts are transferrable between different LMs to retain significant performance, indicating that LM prompting may not follow human language patterns.