2025
pdf
bib
abs
Ask Optimal Questions: Aligning Large Language Models with Retriever’s Preference in Conversation
Chanwoong Yoon
|
Gangwoo Kim
|
Byeongguk Jeon
|
Sungdong Kim
|
Yohan Jo
|
Jaewoo Kang
Findings of the Association for Computational Linguistics: NAACL 2025
Conversational search, unlike single-turn retrieval tasks, requires understanding the current question within a dialogue context. The common approach of rewrite-then-retrieve aims to decontextualize questions to be self-sufficient for off-the-shelf retrievers, but most existing methods produce sub-optimal query rewrites due to the limited ability to incorporate signals from the retrieval results. To overcome this limitation, we present a novel framework RetPO (Retriever’s Preference Optimization), which is designed to optimize a language model (LM) for reformulating search queries in line with the preferences of the target retrieval systems. The process begins by prompting a large LM to produce various potential rewrites and then collects retrieval performance for these rewrites as the retrievers’ preferences. Through the process, we construct a large-scale dataset called RF collection, containing Retrievers’ Feedback on over 410K query rewrites across 12K conversations. Furthermore, we fine-tune a smaller LM using this dataset to align it with the retrievers’ preferences as feedback. The resulting model demonstrates superiority on two benchmarks, surpassing the previous state-of-the-art performance of rewrite-then-retrieve approaches, including GPT-3.5.
pdf
bib
abs
ETHIC: Evaluating Large Language Models on Long-Context Tasks with High Information Coverage
Taewhoo Lee
|
Chanwoong Yoon
|
Kyochul Jang
|
Donghyeon Lee
|
Minju Song
|
Hyunjae Kim
|
Jaewoo Kang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Recent advancements in large language models (LLM) capable of processing extremely long texts highlight the need for a dedicated evaluation benchmark to assess their long-context capabilities. However, existing methods, like the needle-in-a-haystack test, do not effectively assess whether these models fully utilize contextual information, raising concerns about the reliability of current evaluation techniques. To thoroughly examine the effectiveness of existing benchmarks, we introduce a new metric called information coverage (IC), which quantifies the proportion of the input context necessary for answering queries. Our findings indicate that current benchmarks exhibit low IC; although the input context may be extensive, the actual usable context is often limited. To address this, we present ETHIC, a novel benchmark designed to assess LLMs’ ability to leverage the entire context. Our benchmark comprises 1,986 test instances spanning four long-context tasks with high IC scores in the domains of books, debates, medicine, and law. Our evaluations reveal significant performance drops in contemporary LLMs, highlighting a critical challenge in managing long contexts. Our benchmark is available at https://github.com/dmis-lab/ETHIC.
pdf
bib
abs
Rationale-Guided Retrieval Augmented Generation for Medical Question Answering
Jiwoong Sohn
|
Yein Park
|
Chanwoong Yoon
|
Sihyeon Park
|
Hyeon Hwang
|
Mujeen Sung
|
Hyunjae Kim
|
Jaewoo Kang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Large language models (LLM) hold significant potential for applications in biomedicine, but they struggle with hallucinations and outdated knowledge.While retrieval-augmented generation (RAG) is generally employed to address these issues, it also has its own set of challenges: (1) LLMs are vulnerable to irrelevant or unhelpful context, (2) medical queries are often not well-targeted for helpful information, and (3) retrievers are prone to bias toward the specific source corpus they were trained on. In this study, we present RAG2 (RAtionale-Guided RAG), a new framework for enhancing the reliability of RAG in biomedical contexts. RAG2 incorporates three key innovations: a small filtering model trained on perplexity-based labels of rationales, which selectively augments informative snippets of documents while filtering out distractors; LLM-generated rationales as queries to improve the utility of retrieved snippets; a structure designed to retrieve snippets evenly from a comprehensive set of four biomedical corpora, effectively mitigating retriever bias. Our experiments demonstrate that RAG2 improves the state-of-the-art LLMs of varying sizes, with improvements of up to 6.1%, and it outperforms the previous best medical RAG model by up to 5.6% across three medical question-answering benchmarks. Our code is available at https://github.com/dmis-lab/RAG2
2024
pdf
bib
abs
CompAct: Compressing Retrieved Documents Actively for Question Answering
Chanwoong Yoon
|
Taewhoo Lee
|
Hyeon Hwang
|
Minbyul Jeong
|
Jaewoo Kang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Retrieval-augmented generation supports language models to strengthen their factual groundings by providing external contexts. However, language models often face challenges when given extensive information, diminishing their effectiveness in solving questions. Context compression tackles this issue by filtering out irrelevant information, but current methods still struggle in realistic scenarios where crucial information cannot be captured with a single-step approach. To overcome this limitation, we introduce CompAct, a novel framework that employs an active strategy to condense extensive documents without losing key information. Our experiments demonstrate that CompAct brings significant improvements in both performance and compression rate on multi-hop question-answering benchmarks. CompAct flexibly operates as a cost-efficient plug-in module with various off-the-shelf retrievers or readers, achieving exceptionally high compression rates (47x).