Changhua Meng


2025

pdf bib
Parameter-free and Accessible Prompt Learning to Enhance Adversarial Robustness for Pre-trained Vision-Language Models
Xingran Zhou | Kun Yang | Changtao Miao | Bingyu Hu | Zhuoer Xu | Shiwen Cui | Changhua Meng | Dan Hong
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large pre-trained Vision-Language Models (VLMs) have revolutionized both computer vision and natural language processing. Despite their success, adversarial examples can still mislead VLMs into producing incorrect results. This work focuses on boosting the adversarial robustness of VLMs by searching for text prompts at the word level, rather than optimizing continuous textual embeddings. We introduce Parameter-Free Prompt Tuning (PFPT) to learn defense words that enhance resilience against adversarial attacks when appended to existing prompts, thereby offering ease of use due to the simplicity of this approach. These defense words are naturally present in the inherent vocabulary of VLMs, providing a human-readable property. PFPT employs a coarse-to-fine strategy with carefully designed optimization objectives to guide the word search. Extensive experiments demonstrate our method’s superiority over hand-engineered prompts and other state-of-the-art methods. PFPT significantly boosts accuracy and robustness, outperforming hand-engineered prompts with average gains of +4.9% and +5.8%, respectively (epsilon=1/255).

2024

pdf bib
Mirror-Consistency: Harnessing Inconsistency in Majority Voting
Siyuan Huang | Zhiyuan Ma | Jintao Du | Changhua Meng | Weiqiang Wang | Zhouhan Lin
Findings of the Association for Computational Linguistics: EMNLP 2024

Self-Consistency, a widely-used decoding strategy, significantly boosts the reasoning capabilities of Large Language Models (LLMs). However, it depends on the plurality voting rule, which focuses on the most frequent answer while overlooking all other minority responses. These inconsistent minority views often illuminate areas of uncertainty within the model’s generation process. To address this limitation, we present Mirror-Consistency, an enhancement of the standard Self-Consistency approach. Our method incorporates a ‘reflective mirror’ into the self-ensemble decoding process and enables LLMs to critically examine inconsistencies among multiple generations. Additionally, just as humans use the mirror to better understand themselves, we propose using Mirror-Consistency to enhance the sample-based confidence calibration methods, which helps to mitigate issues of overconfidence. Our experimental results demonstrate that Mirror-Consistency yields superior performance in both reasoning accuracy and confidence calibration compared to Self-Consistency.

pdf bib
Enhancing Distantly Supervised Named Entity Recognition with Strong Label Guided Lottery Training
Zhiyuan Ma | Jintao Du | Changhua Meng | Weiqiang Wang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

In low-resource Named Entity Recognition (NER) scenarios, only a limited quantity of strongly labeled data is available, while a vast amount of weakly labeled data can be easily acquired through distant supervision. However, weakly labeled data may fail to improve the model performance or even harm it due to the inevitable noise. While training on noisy data, only certain parameters are essential for model learning, termed safe parameters, whereas the other parameters tend to fit noise. In this paper, we propose a noise-robust learning framework where safe parameters can be identified with guidance from the small set of strongly labeled data, and non-safe parameters are suppressed during training on weakly labeled data for better generalization. Our method can effectively mitigate the impact of noise in weakly labeled data, and it can be easily integrated with data level noise-robust learning methods for NER. We conduct extensive experiments on multiple datasets and the results show that our approach outperforms the state-of-the-art methods.