Bo Pan


2025

pdf bib
GRAG: Graph Retrieval-Augmented Generation
Yuntong Hu | Zhihan Lei | Zheng Zhang | Bo Pan | Chen Ling | Liang Zhao
Findings of the Association for Computational Linguistics: NAACL 2025

Naive Retrieval-Augmented Generation (RAG) focuses on individual documents during retrieval and, as a result, falls short in handling networked documents which are very popular in many applications such as citation graphs, social media, and knowledge graphs. To overcome this limitation, we introduce Graph Retrieval-Augmented Generation (GRAG), which tackles the fundamental challenges in retrieving textual subgraphs and integrating the joint textual and topological information into Large Language Models (LLMs) to enhance its generation. To enable efficient textual subgraph retrieval, we propose a novel divide-and-conquer strategy that retrieves the optimal subgraph structure in linear time. To achieve graph context-aware generation, incorporate textual graphs into LLMs through two complementary views—the text view and the graph view—enabling LLMs to more effectively comprehend and utilize the graph context. Extensive experiments on graph reasoning benchmarks demonstrate that in scenarios requiring multi-hop reasoning on textual graphs, our GRAG approach significantly outperforms current state-of-the-art RAG methods. Our datasets as well as codes of GRAG are available at https://github.com/HuieL/GRAG.

2024

pdf bib
ELAD: Explanation-Guided Large Language Models Active Distillation
Yifei Zhang | Bo Pan | Chen Ling | Yuntong Hu | Liang Zhao
Findings of the Association for Computational Linguistics: ACL 2024

The deployment and application of Large Language Models (LLMs) is hindered by their memory inefficiency, computational demands, and the high costs of API inferences. Traditional distillation methods, which transfer the capabilities of LLMs to smaller models, often fail to determine whether the knowledge has been sufficiently transferred, potentially resulting in high costs or incomplete distillation. In this paper, we propose an Explanation-Guided LLMs Active Distillation (ELAD) framework that employs an active learning strategy to optimize the balance between annotation costs and model performance. To improve the efficiency of sample selection, we introduce an explanation-guided sample selection method that identifies samples challenging its reasoning by exploiting uncertainties in reasoning explanation steps. Additionally, we present a customized LLM-annotated explanation revision technique where the teacher model detects and corrects flaws in the student model’s reasoning. Our experiments across various reasoning datasets demonstrate that our framework significantly enhances the efficiency of LLMs knowledge distillation.