Bhavya Kailkhura


2025

pdf bib
Extracting and Understanding the Superficial Knowledge in Alignment
Runjin Chen | Gabriel Jacob Perin | Xuxi Chen | Xilun Chen | Yan Han | Nina S. T. Hirata | Junyuan Hong | Bhavya Kailkhura
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Alignment of large language models (LLMs) with human values and preferences, often achieved through fine-tuning based on human feedback, is essential for ensuring safe and responsible AI behaviors. However, the process typically requires substantial data and computation resources. Recent studies have revealed that alignment might be attainable at lower costs through simpler methods, such as in-context learning. This leads to the question: Is alignment predominantly superficial? In this paper, we delve into this question and provide a quantitative analysis. We formalize the concept of superficial knowledge, defining it as knowledge that can be acquired through easily token restyling, without affecting the model’s ability to capture underlying causal relationships between tokens. We propose a method to extract and isolate those superficial knowledge from aligned models, focusing on the shallow modifications to the final token selection process. By comparing models augmented only with superficial knowledge to fully aligned models, we quantify the superficial portion of alignment. Our findings reveal that while superficial knowledge constitutes a significant portion of alignment, particularly in safety and detoxification tasks, it is not the whole story. Tasks requiring reasoning and contextual understanding still rely on deeper knowledge. Additionally, we demonstrate two practical advantages of isolated superficial knowledge: (1) it can be transferred between models, enabling efficient offsite alignment of larger models using extracted superficial knowledge from smaller models, and (2) it is recoverable, allowing for the restoration of alignment in compromised models without sacrificing performance.

pdf bib
Speculative Diffusion Decoding: Accelerating Language Generation through Diffusion
Jacob K Christopher | Brian R. Bartoldson | Tal Ben-Nun | Michael Cardei | Bhavya Kailkhura | Ferdinando Fioretto
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Speculative decoding has emerged as a widely adopted method to accelerate large language model inference without sacrificing the quality of the model outputs. While this technique has facilitated notable speed improvements by enabling parallel sequence verification, its efficiency remains inherently limited by the reliance on incremental token generation in existing draft models. To overcome this limitation, this paper proposes an adaptation of speculative decoding which uses discrete diffusion models to generate draft sequences. This allows parallelization of both the drafting and verification steps, providing significant speedups to the inference process. Our proposed approach, *Speculative Diffusion Decoding (SpecDiff)*, is validated on standard language generation benchmarks and empirically demonstrated to provide up to 7.2x speedups over standard generation processes and up to 1.75x speedups over existing speculative decoding approaches.

pdf bib
Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense
Yang Ouyang | Hengrui Gu | Shuhang Lin | Wenyue Hua | Jie Peng | Bhavya Kailkhura | Meijun Gao | Tianlong Chen | Kaixiong Zhou
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

As large language models (LLMs) are increasingly deployed in diverse applications, including chatbot assistants and code generation, aligning their behavior with safety and ethical standards has become paramount. However, jailbreak attacks, which exploit vulnerabilities to elicit unintended or harmful outputs, threaten LLMs safety significantly. In this paper, we introduce Layer-AdvPatcher, a novel methodology designed to defend against jailbreak attacks by utilizing an unlearning strategy to patch specific layers within LLMs through self-augmented datasets. Our insight is that certain layer(s), tend to produce affirmative tokens when faced with harmful prompts. By identifying these layers and adversarially exposing them to generate more harmful data, one can understand their inherent and diverse vulnerabilities to attacks. With these exposures, we then “unlearn” these issues, reducing the impact of affirmative tokens and hence minimizing jailbreak risks while keeping the model’s responses to safe queries intact.We conduct extensive experiments on two models, four benchmark datasets, and multiple state-of-the-art jailbreak attacks to demonstrate the efficacy of our approach. Results indicate that our framework reduces the harmfulness and attack success rate of jailbreak attacks without compromising utility for benign queries compared to recent defense methods. Our code is publicly available at: https://github.com/oyy2000/LayerAdvPatcher

2024

pdf bib
Shifting Attention to Relevance: Towards the Predictive Uncertainty Quantification of Free-Form Large Language Models
Jinhao Duan | Hao Cheng | Shiqi Wang | Alex Zavalny | Chenan Wang | Renjing Xu | Bhavya Kailkhura | Kaidi Xu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) show promising results in language generation and instruction following but frequently “hallucinate”, making their outputs less reliable. Despite Uncertainty Quantification’s (UQ) potential solutions, implementing it accurately within LLMs is challenging. Our research introduces a simple heuristic: not all tokens in auto-regressive LLM text equally represent the underlying meaning, as “linguistic redundancy” often allows a few keywords to convey the essence of long sentences. However, current methods underestimate this inequality when assessing uncertainty, causing tokens with limited semantics to be equally or excessively weighted in UQ. To correct this, we propose Shifting Attention to more Relevant (SAR) components at both token- and sentence-levels for better UQ. We conduct extensive experiments involving a range of popular “off-the-shelf” LLMs, such as Vicuna, WizardLM, and LLaMA-2-chat, with model sizes extending up to 33B parameters. We evaluate various free-form question-answering tasks, encompassing domains such as reading comprehension, science Q&A, and medical Q&A. Our experimental results, coupled with a comprehensive demographic analysis, demonstrate the superior performance of SAR. The code is available at https://github.com/jinhaoduan/SAR.

pdf bib
SOUL: Unlocking the Power of Second-Order Optimization for LLM Unlearning
Jinghan Jia | Yihua Zhang | Yimeng Zhang | Jiancheng Liu | Bharat Runwal | James Diffenderfer | Bhavya Kailkhura | Sijia Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have highlighted the necessity of effective unlearning mechanisms to comply with data regulations and ethical AI practices. LLM unlearning aims at removing undesired data influences and associated model capabilities without compromising utility beyond the scope of unlearning. While interest in studying LLM unlearning is growing, the impact of the optimizer choice for LLM unlearning remains unexplored. In this work, we shed light on the significance of optimizer selection in LLM unlearning for the first time, establishing a clear connection between second-order optimization and influence unlearning (a classical approach using influence functions to update the model for data influence removal). This insight propels us to develop a second-order optimization-based LLM unlearning framework, termed Second-Order UnLearning (SOUL), which extends the static, one-shot model update using influence unlearning to a dynamic, iterative unlearning process. Our extensive experiments show that SOUL consistently outperforms conventional first-order methods across various unlearning tasks, models, and metrics, indicating that second-order optimization offers an effective and broadly applicable solution for LLM unlearning.

pdf bib
RankMean: Module-Level Importance Score for Merging Fine-tuned LLM Models
Gabriel Perin | Xuxi Chen | Shusen Liu | Bhavya Kailkhura | Zhangyang Wang | Brian Gallagher
Findings of the Association for Computational Linguistics: ACL 2024

Traditionally, developing new language models (LMs) capable of addressing multiple tasks involves fine-tuning pre-trained LMs using a wide collection of datasets, a process that often incurs significant computational expenses. Model merging emerges as a cost-effective alternative, allowing the integration of existing models fine-tuned on different tasks into a single model that performs well across all tasks, eliminating the need for additional training. In this paper, we propose RankMean, an algorithm for merging fine-tuned LMs without requiring any downstream data. RankMean determines merging coefficients based on the relative rankings of weight change magnitudes and applies these coefficients for module-wise integration of various fine-tuned models. Our experimental results demonstrate that RankMean outperforms existing baseline methods on multiple benchmarks. The code is available at https://github.com/VITA-Group/RankMean.

pdf bib
ReTA: Recursively Thinking Ahead to Improve the Strategic Reasoning of Large Language Models
Jinhao Duan | Shiqi Wang | James Diffenderfer | Lichao Sun | Tianlong Chen | Bhavya Kailkhura | Kaidi Xu
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Current logical reasoning evaluations of Large Language Models (LLMs) primarily focus on single-turn and static environments, such as arithmetic problems. The crucial problem of multi-turn, strategic reasoning is under-explored. In this work, we analyze the multi-turn strategic reasoning of LLMs through text-driven complete- and incomplete-information gaming, e.g., board games (Tic-Tac-Toe, Connect-4) and poker games (Texas Hold’em Poker). Specifically, we consider two distinct scenarios: 1) Online Racing, featuring multiple LLMs/agents to facilitate direct competition and comparison; 2) Offline Probing, constructing targeted questions with verified ground truth to evaluate LLMs’ strategic behaviors. Experimental results demonstrate that existing state-of-the-art LLMs and reasoning schemes are largely ineffective for strategic reasoning tasks. To mitigate these limitations, we propose a simple yet effective Recursively Thinking-Ahead (ReTA) agent, incorporating a recursive prompting mechanism that automatically analyzes the opponents’ future moves/actions and assigns reward signals for these situations, to strengthen the strategic reasoning of LLMs. We hope our work could spur further research and exploration in the multi-turn strategic reasoning of LLMs. The code is available at https://github.com/jinhaoduan/ReTA.