Artem Snegirev


2025

pdf bib
The Russian-focused embedders’ exploration: ruMTEB benchmark and Russian embedding model design
Artem Snegirev | Maria Tikhonova | Maksimova Anna | Alena Fenogenova | Aleksandr Abramov
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Embedding models play a crucial role in Natural Language Processing (NLP) by creating text embeddings used in various tasks such as information retrieval and assessing semantic text similarity. This paper focuses on research related to embedding models in the Russian language. It introduces a new Russian-focused embedding model called ru-en-RoSBERTa and the ruMTEB benchmark, the Russian version extending the Massive Text Embedding Benchmark (MTEB). Our benchmark includes seven categories of tasks, such as semantic textual similarity, text classification, reranking, and retrieval.The research also assesses a representative set of Russian and multilingual models on the proposed benchmark. The findings indicate that the new model achieves results that are on par with state-of-the-art models in Russian. We release the model ru-en-RoSBERTa, and the ruMTEB framework comes with open-source code, integration into the original framework and a public leaderboard.

2024

pdf bib
A Family of Pretrained Transformer Language Models for Russian
Dmitry Zmitrovich | Aleksandr Abramov | Andrey Kalmykov | Vitaly Kadulin | Maria Tikhonova | Ekaterina Taktasheva | Danil Astafurov | Mark Baushenko | Artem Snegirev | Tatiana Shavrina | Sergei S. Markov | Vladislav Mikhailov | Alena Fenogenova
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Transformer language models (LMs) are fundamental to NLP research methodologies and applications in various languages. However, developing such models specifically for the Russian language has received little attention. This paper introduces a collection of 13 Russian Transformer LMs, which spans encoder (ruBERT, ruRoBERTa, ruELECTRA), decoder (ruGPT-3), and encoder-decoder (ruT5, FRED-T5) architectures. We provide a report on the model architecture design and pretraining, and the results of evaluating their generalization abilities on Russian language understanding and generation datasets and benchmarks. By pretraining and releasing these specialized Transformer LMs, we aim to broaden the scope of the NLP research directions and enable the development of industrial solutions for the Russian language.