Anusha M D Gowda
2025
Bridging Linguistic Complexity: Sentiment Analysis of Tamil Code-Mixed Text Using Meta-Model
Anusha M D Gowda
|
Deepthi Vikram
|
Parameshwar R Hegde
Proceedings of the Fifth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages
Sentiment analysis in code-mixed languages poses significant challenges due to the complex nature of mixed-language text. This study explores sentiment analysis on Tamil code-mixed text using deep learning models such as Long Short-Term Memory (LSTM), hybrid models like Convolutional Neural Network (CNN) + Gated Recurrent Unit (GRU) and LSTM + GRU, along with meta-models including Logistic Regression, Random Forest, and Decision Tree. The LSTM+GRU hybrid model achieved an accuracy of 0.31, while the CNN+GRU hybrid model reached 0.28. The Random Forest meta-model demonstrated exceptional performance on the development set with an accuracy of 0.99. However, its performance dropped significantly on the test set, achieving an accuracy of 0.1333. The study results emphasize the potential of meta-model-based classification for improving performance in NLP tasks.
YenCS@DravidianLangTech 2025: Integrating Hybrid Architectures for Fake News Detection in Low-Resource Dravidian Languages
Anusha M D Gowda
|
Parameshwar R Hegde
Proceedings of the Fifth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages
Detecting fake news in under-resourced Dravidian languages is a rigorous task due to the scarcity of annotated datasets and the intricate nature of code-mixed text. This study tackles these issues by employing advanced machine learning techniques for two key classification tasks, the first task involves binary classification achieving a macro-average F1-score of 0.792 using a hybrid fusion model that integrates Bidirectional Recurrent Neural Network (Bi-RNN) and Long Short-Term Memory (LSTM)-Recurrent Neural Network (RNN) with weighted averaging. The second task focuses on fine-grained classification, categorizing news where an LSTM-GRU hybrid model attained a macro-average F1-score of 0.26. These findings highlight the effectiveness of hybrid models in improving fake news detection for under-resourced languages. Additionally, this study provides a foundational framework that can be adapted to address similar challenges in other under-resourced languages, emphasizing the need for further research in this area.