Anran Hao
2025
Soft Syntactic Reinforcement for Neural Event Extraction
Anran Hao
|
Jian Su
|
Shuo Sun
|
Teo Yong Sen
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Recent event extraction (EE) methods rely on pre-trained language models (PLMs) but still suffer from errors due to a lack of syntactic knowledge. While syntactic information is crucial for EE, there is a need for effective methods to incorporate syntactic knowledge into PLMs. To address this gap, we present a novel method to incorporate syntactic information into PLM-based models for EE, which do not require external syntactic parsers to produce syntactic features of task data. Instead, our proposed soft syntactic reinforcement (SSR) mechanism learns to select syntax-related dimensions of PLM representation during pretraining on a standard dependency corpus. The adapted PLM weights and the syntax-aware representation then facilitate the model’s prediction over the task data. On both sentence-level and document-level EE benchmark datasets, our proposed method achieves state-of-the-art results, outperforming baseline models and existing syntactic reinforcement methods. To the best of our knowledge, this is the first work in this direction. Our code is available at https://github.com/Anran971/sre-naacl25.
2023
Jointprop: Joint Semi-supervised Learning for Entity and Relation Extraction with Heterogeneous Graph-based Propagation
Yandan Zheng
|
Anran Hao
|
Anh Tuan Luu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Semi-supervised learning has been an important approach to address challenges in extracting entities and relations from limited data. However, current semi-supervised works handle the two tasks (i.e., Named Entity Recognition and Relation Extraction) separately and ignore the cross-correlation of entity and relation instances as well as the existence of similar instances across unlabeled data. To alleviate the issues, we propose Jointprop, a Heterogeneous Graph-based Propagation framework for joint semi-supervised entity and relation extraction, which captures the global structure information between individual tasks and exploits interactions within unlabeled data. Specifically, we construct a unified span-based heterogeneous graph from entity and relation candidates and propagate class labels based on confidence scores. We then employ a propagation learning scheme to leverage the affinities between labelled and unlabeled samples. Experiments on benchmark datasets show that our framework outperforms the state-of-the-art semi-supervised approaches on NER and RE tasks. We show that the joint semi-supervised learning of the two tasks benefits from their codependency and validates the importance of utilizing the shared information between unlabeled data.