Ankur Taly


2025

pdf bib
An Efficient Rehearsal Scheme for Catastrophic Forgetting Mitigation during Multi-stage Fine-tuning
Andrew Bai | Chih-Kuan Yeh | Cho-Jui Hsieh | Ankur Taly
Findings of the Association for Computational Linguistics: NAACL 2025

Incrementally fine-tuning foundational models on new tasks or domains is now the de facto approach in NLP. A known pitfall of this approach is the catastrophic forgetting of prior knowledge that happens during fine-tuning. A common approach to alleviate such forgetting is to rehearse samples from prior tasks during fine-tuning. Several existing works assume a fixed memory buffer to store prior task examples, while relying on inferences (forward passes) with the model at hand for choosing examples for rehearsal from the buffer. However, given the increasing computational cost of model inference, and decreasing cost of data storage, we focus on the setting to rehearse samples with a fixed computational budget instead of a fixed memory budget. We propose a sampling scheme, mix-cd, that prioritizes rehearsal of “collateral damage” samples, which are samples predicted correctly by the prior model but forgotten by the incrementally tuned one. The crux of our scheme is a procedure to efficiently estimate the density of collateral damage samples without incurring additional model inferences. Our approach is computationally efficient, easy to implement, and outperforms several leading continual learning methods in compute-constrained settings. All the code will be publicly available at https://github.com/jybai/mix-cd-rehearsal.

2018

pdf bib
Did the Model Understand the Question?
Pramod Kaushik Mudrakarta | Ankur Taly | Mukund Sundararajan | Kedar Dhamdhere
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We analyze state-of-the-art deep learning models for three tasks: question answering on (1) images, (2) tables, and (3) passages of text. Using the notion of “attribution” (word importance), we find that these deep networks often ignore important question terms. Leveraging such behavior, we perturb questions to craft a variety of adversarial examples. Our strongest attacks drop the accuracy of a visual question answering model from 61.1% to 19%, and that of a tabular question answering model from 33.5% to 3.3%. Additionally, we show how attributions can strengthen attacks proposed by Jia and Liang (2017) on paragraph comprehension models. Our results demonstrate that attributions can augment standard measures of accuracy and empower investigation of model performance. When a model is accurate but for the wrong reasons, attributions can surface erroneous logic in the model that indicates inadequacies in the test data.