Anirudh Khatry
2025
An empirical study of validating synthetic data for formula generation
Usneek Singh
|
José Cambronero
|
Sumit Gulwani
|
Aditya Kanade
|
Anirudh Khatry
|
Vu Le
|
Mukul Singh
|
Gust Verbruggen
Findings of the Association for Computational Linguistics: NAACL 2025
Large language models (LLMs) can be leveraged to help write formulas in spreadsheets, but formula data resources are scarce, impacting both the base performance of pre-trained models and limiting the ability to fine-tune them. Given a corpus of formulas, we can use another model to generate synthetic natural language utterances for fine-tuning. However, it is important to validate whether the natural language (NL) generated by the LLM is accurate for it to be beneficial for fine-tuning. In this paper, we provide empirical results on the impact of validating these synthetic training examples with surrogate objectives that evaluate the accuracy of the synthetic annotations. We demonstrate that validation improves performance over raw data across four models (2 open and 2 closed weight). Interestingly, we show that although validation tends to prune more challenging examples, it increases the complexity of problems that models can solve after being fine-tuned on validated data.
2023
TSTR: Target Similarity Tuning Meets the Real World
Anirudh Khatry
|
Sumit Gulwani
|
Priyanshu Gupta
|
Vu Le
|
Mukul Singh
|
Ananya Singha
|
Gust Verbruggen
Findings of the Association for Computational Linguistics: EMNLP 2023
Target similarity tuning (TST) is a method of selecting relevant examples in natural language (NL) to code generation through large language models (LLMs) to improve performance. Its goal is to adapt a sentence embedding model to have the similarity between two NL inputs match the similarity between their associated code outputs. In this paper, we propose different methods to apply and improve TST in the real world. First, we replace the sentence transformer with embeddings from a larger model, which reduces sensitivity to the language distribution and thus provides more flexibility in synthetic generation of examples, and we train a tiny model that transforms these embeddings to a space where embedding similarity matches code similarity, which allows the model to remain a black box and only requires a few matrix multiplications at inference time. Second, we how to efficiently select a smaller number of training examples to train the TST model. Third, we introduce a ranking-based evaluation for TST that does not require end-to-end code generation experiments, which can be expensive to perform.
Search
Fix data
Co-authors
- Sumit Gulwani 2
- Vu Le 2
- Mukul Singh 2
- Gust Verbruggen 2
- José Cambronero 1
- show all...