Angana Borah


2025

pdf bib
Towards Region-aware Bias Evaluation Metrics
Angana Borah | Aparna Garimella | Rada Mihalcea
Proceedings of the 3rd Workshop on Cross-Cultural Considerations in NLP (C3NLP 2025)

When exposed to human-generated data, language models are known to learn and amplify societal biases. While previous works introduced metrics that can be used to assess the bias in these models, they rely on assumptions that may not be universally true. For instance, a gender bias dimension commonly used by these metrics is that of family–career, but this may not be the only common bias in certain regions of the world. In this paper, we identify topical differences in gender bias across different regions and propose a region-aware bottom-up approach for bias assessment. Several of our proposed region-aware gender bias dimensions are found to be aligned with the human perception of gender biases in these regions.

pdf bib
The Power of Many: Multi-Agent Multimodal Models for Cultural Image Captioning
Longju Bai | Angana Borah | Oana Ignat | Rada Mihalcea
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Multimodal Models (LMMs) exhibit impressive performance across various multimodal tasks. However, their effectiveness in cross-cultural contexts remains limited due to the predominantly Western-centric nature of most data and models. Conversely, multi-agent models have shown significant capability in solving complex tasks. Our study evaluates the collective performance of LMMs in a multi-agent interaction setting for the novel task of cultural image captioning. Our contributions are as follows: (1) We introduce MosAIC, a Multi-Agent framework to enhance cross-cultural Image Captioning using LMMs with distinct cultural personas; (2) We provide a dataset of culturally enriched image captions in English for images from China, India, and Romania across three datasets: GeoDE, GD-VCR, CVQA; (3) We propose a culture-adaptable metric for evaluating cultural information within image captions; and (4) We show that the multi-agent interaction outperforms single-agent models across different metrics, and offer valuable insights for future research.

2024

pdf bib
Towards Implicit Bias Detection and Mitigation in Multi-Agent LLM Interactions
Angana Borah | Rada Mihalcea
Findings of the Association for Computational Linguistics: EMNLP 2024

As Large Language Models (LLMs) continue to evolve, they are increasingly being employed in numerous studies to simulate societies and execute diverse social tasks. However, LLMs are susceptible to societal biases due to their exposure to human-generated data. Given that LLMs are being used to gain insights into various societal aspects, it is essential to mitigate these biases. To that end, our study investigates the presence of implicit gender biases in multi-agent LLM interactions and proposes two strategies to mitigate these biases. We begin by creating a dataset of scenarios where implicit gender biases might arise, and subsequently develop a metric to assess the presence of biases. Our empirical analysis reveals that LLMs generate outputs characterized by strong implicit bias associations (≥ ≈ 50% of the time). Furthermore, these biases tend to escalate following multi-agent interactions. To mitigate them, we propose two strategies: self-reflection with in-context examples (ICE); and supervised fine-tuning. Our research demonstrates that both methods effectively mitigate implicit biases, with the ensemble of fine-tuning and self-reflection proving to be the most successful.

2023

pdf bib
Measuring Spurious Correlation in Classification: “Clever Hans” in Translationese
Angana Borah | Daria Pylypenko | Cristina España-Bonet | Josef van Genabith
Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing

Recent work has shown evidence of “Clever Hans” behavior in high-performance neural translationese classifiers, where BERT-based classifiers capitalize on spurious correlations, in particular topic information, between data and target classification labels, rather than genuine translationese signals. Translationese signals are subtle (especially for professional translation) and compete with many other signals in the data such as genre, style, author, and, in particular, topic. This raises the general question of how much of the performance of a classifier is really due to spurious correlations in the data versus the signals actually targeted for by the classifier, especially for subtle target signals and in challenging (low resource) data settings. We focus on topic-based spurious correlation and approach the question from two directions: (i) where we have no knowledge about spurious topic information and its distribution in the data, (ii) where we have some indication about the nature of spurious topic correlations. For (i) we develop a measure from first principles capturing alignment of unsupervised topics with target classification labels as an indication of spurious topic information in the data. We show that our measure is the same as purity in clustering and propose a “topic floor” (as in a “noise floor”) for classification. For (ii) we investigate masking of known spurious topic carriers in classification. Both (i) and (ii) contribute to quantifying and (ii) to mitigating spurious correlations.